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Summary

• We extend the policy gradient theorem (Sutton, McAllester, et al., 2000)
to the options framework.

• We provide two new results for computing the intra-option policy
gradients as well as the termination gradients.

• Their algorithmic implementation gives rise to the option-critic
architecture

Options framework

Options (Sutton, Precup, and Singh, 1999) formalize the idea of temporally
extended actions (also sometimes called skills or macro-actions).

A Markovian option ω ∈ Ω is a triple 〈Iω, πω, βω〉:
• Initiation set Iω ⊆ S
• Policy πω (stochastic or deterministic)

• Termination function βω : S → [0, 1].

Augmented state space

Even with an MDP structure and Markov options, the induced flat process
over primitive actions is not Markovian. We then need to consisder the
gradient of VΩ(s̃) ≡ QΩ(s,w), were S̃ ≡ S × Ω.
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Intra-option policy gradient theorem

Given a set of fixed Markov options and a fixed policy over them, in the
start-state formulation,
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Termination gradient theorem

Given a set of fixed Markov options and a fixed policy over them, in the
start-state formulations,
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Option-critic architecture
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Figure : The option-critic architecture consists of a set of options, a policy over them and a
critic. Gradients can be derived from the critic for both the intra-option policies and
termination functions. The execution model is suggested pictorially by a switch ⊥ over the
contacts (. Switching can only take place when a termination event is encountered.

Learning intra-option policies with fixed terminations
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Figure : Four-rooms domain (Sutton, Precup, and Singh, 1999) overlaid with a deterministic
optimal MDP policy. The blue color is for wall cells, the green cell corresponds to the initial
state and the red one is a goal state. The initation set of option 1 is highlighted with the
color yellow. The circles represent the subgoal states for option 0

We first studied the behavior of the intra-option policy gradient algorithm
when the initiation sets and subgoals are fixed by hand. In this case,
options terminate with probability 0.9 in a hallway state and four of its
incoming neighboring states. We chose to parametrize the intra-option
policies using the softmax distribution with a one-hot encoding of
state-action pairs as basis functions.

Learning both intra-option policies and terminations
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(c) VΩ(0) vs optimization steps

Figure : Simultaneous learning of option policies and termination functions

We used the same softmax parametrization as in the previous experiment
but chose to represent the termination functions using the hyperbolic
tangent function. We found that option-critic converges faster than an
MDP-based actor-critic approach with a single softmax policy over primitive
actions. When overlaid to the grid layout, a plot of the termination
probabilities for option 0 (fig. 3b) shows that option-critic learned to
terminate around an hallway state, agreeing with our intuition.

Opportunities and future work

• Option-critic opens the way to end-to-end learning of RL agents.

• It enables joint study of temporal and state representation learning.

Ongoing work:

• Function approximation: provide an analogue to the feature
compatibility condition (Sutton, McAllester, et al., 2000)

• Two-timescale convergence analysis (Konda and Tsitsiklis, 2004)

• Regularization: we are developping a bounded rationality approach that
favors learning fast and robust options. Come see us at the NIPS 2015
Bounded Rationality workshop.
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