
The option-critic architecture

Pierre-Luc Bacon and Doina Precup
Reasoning and Learning Lab

McGill University
{pbacon, dprecup}@cs.mcgill.ca

Abstract

Temporal abstraction has long been recognized as key to scaling up learning and
planning in reinforcement learning. While planning with temporally extended
actions in the options framework is well understood, learning such abstractions
autonomously is still challenging. We present recent results extending the policy
gradient theorem to options, and propose a new option-critic architecture.

1 Introduction

Temporal abstraction is the idea of representing abstract knowledge about course of actions at dif-
ferent, extended time scales. In reinforcement learning, the options framework [Sutton et al., 1999;
Precup, 2000] allows defining such courses of action, as well as planning with them in seamless fash-
ion. However, the problem of discovering temporally extended actions autonomously (also known
as skill acquisition) is still an open, despite much research effort [McGovern and Barto, 2001; Stolle
and Precup, 2002; Menache et al., 2002; Simsek and Barto, 2004, 2008; Konidaris et al., 2011;
Niekum and Barto, 2011]. In particular, this problem is difficult when the state space and action
space are continuous. Much of the existing work is focusing on finding subgoals, ie. useful states
that an agent might reach, then learning policies to achieve these subgoals. This approach has lead
to interesting methods, but ones which are very “combinatorial” in flavour. Additionally, learning
how to achieve the subgoals becomes a task in itself, which could be expensive in terms of data and
computation time.

In this paper we present an alternative view, which does not differentiate between the problem of
discovering options and that of learning their policies. Instead, we embrace a gradual process of
learning both option policies and their termination conditions simultaneously, in a policy gradient
framework. Based on the policy gradient theorem, we derive new results which enable us to blur the
lines between discovering and learning options. Since reinforcement learning makes continual and
online learning one of its foundational principle, we find important to incorporate this view with that
of discovering options (which we will refer from now as simply learning options).

2 Preliminaries and notation

A Markov Decision Process is a tuple 〈S,A,P, r〉 consisting of a set of states S, a set of actions A,
a transition probability distribution P : S × A → (S → [0, 1]) over the next states and a reward
function r : S × A → R. A stochastic policy is a conditional distribution over actions given a state
π : S × A → [0, 1] while a deterministic policy is a mapping π : S → A. In this paper, we will
consider the problem of maximizing the cumulative discounted return, defined as:

E

{ ∞∑
t=1

γt−1rt

∣∣∣∣∣ s0, π

}
(1)

1



The optimal control problem consists in finding a policy which maximizes this objective. A policy
is optimal if its underlying value function is also optimal, a statement captured by the so-called
Bellman optimality equations:

V ∗(s) = max
a

(
r(s, a) + γ

∑
s′

P (s′ | s, a)V ∗(s′)

)
(2)

Equation (2) can be solved with dynammic programming methods such as value iteration or policy
iteration [Puterman, 1994], if a model of the system can be acquired, or by temporal Difference (TD)
learning [Sutton, 1988] is a model is too expensive to compute. A policy can then be computed based
on the estimated value function.

2.1 Policy gradient

One class of methods which has proven very useful in continuous state and action spaces is that
of policy gradient, in which the policy πθ is parameterized using a function approximator. The
policy gradient theorem of Sutton et al. [2000] addresses the problem of computing the gradient of
expected return (1) with respect to the parameters of the policy. In the discounted case, the policy
gradient is given by:

∂

∂θ
V (s0) = E

s∼µ

{∑
a

πθ (a | s)Q(s, a)

∣∣∣∣∣ s0, πθ

}
(3)

where µ is the stationary distribution of πθ and Q denotes the action-value function. Samples from
the expectation (3) can be used to update the parameters of the policy using stochastic gradient
descent. The algorithmic implementation of the policy gradient theorem is a special case of the
actor-critic architecture [Sutton, 1984]. As in policy iteration, actor-critic methods decouple policy
evaluation from policy improvement. The critic values are used to compute modifications to the
parameters defining the police πθ.

2.2 Options framework

Options [Sutton et al., 1999; Precup, 2000] formalize the idea of temporally extended actions, also
sometimes called skills or macro-actions, by endowing agents with the ability to plan at different
level of temporal abstraction. More precisely, a Markovian option ω ∈ Ω is a triple 〈Iω, πω, βω〉
consisting in an initiation set Iω ⊆ S , a policy πω (stochastic or deterministic) and a termination
function βω : S → [0, 1].

In the call-and-return execution model, an agent initially picks an option according to its policy
over options and subsequently uses the policy of the chosen option until it terminates, at which point
this procedure is repeated. Planning with options consists in solving the optimal control problem
over the set of options and their associated reward and transition models. Reward models express
the expected discounted cumulative return that can be obtained by choosing a particular option
and executing it to termination. They can be succinctly expressed with the following Bellman-like
equations:

r(s, ω) =
∑
a

πω (a | s)

[
r(s, a) + γ

∑
s′

P (s′ | s, a) (1− βω(s′)r(s′, ω)

]
(4)

Similarly, transition models express the expected discounted probability of transitioning to some
given state upon termination.

Because of their Bellman-like equations, reward and transition models can be computed from a
model of the MDP, or learned using methods such as intra-option learning [Sutton et al., 1999] or
LSTD [Sorg and Singh, 2010]. Given the option models, the control problem of determining an
optimal policy over options can be solved by noticing that options induce a Semi-Markov Decision
Process over the original MDP (see [Puterman, 1994] for a theoretical treatment of SMDPs). Clas-
sical dynamic programming methods such as value iteration and policy iteration [Puterman, 1994]
or Dyna planning [Sutton, 1991; Sorg and Singh, 2010] can be used to provide a solution.

2



3 Learning options

A typical approach for learning options is to use pseudo-rewards [Dietterich, 2000; Precup, 2000] or
subgoal methods Sutton et al. [1999]. Under this approach, the termination function and initiation
sets are typically engineered, a “pseudo-reward” function is added to the original rewards of the
MDP, and each option is learned separately to optimize the sum of these (typically through SARSA
[Rummery and Niranjan, 1994] or Q-learning [Watkins, 1989]). Given the fixed set of learned
options, a policy over options can be obtained by learning or planning.

In this work, we try to adopt a more continual perspective on the problem of learning options. At
any time, we would like to distill all of the available experience into every component of our system:
value function and policy over options, internal option policies and termination functions (as well as
their models, if desired). Our main assumption is that option policies and termination functions are
stochastic and representable with parametrized differentiable functions approximators. We develop
new results for learning options by using as blueprint the policy gradient theorem [Sutton et al.,
2000] for iteratively improving the set of options by stochastic gradient descent.

The policy gradient theorem relies on the existence of a stationary distribution over states. As
pointed out originally in [Sutton et al., 1999], even in the presence of an MDP structure and Markov
options, the induced flat process over primitive actions is not Markovian. That is, the current state
and choice of primitive action are not sufficient to fully specify the probability distribution over
next states. One also needs to remember the current executing option at every step, thus forming an
augmented state space in S̃ ≡ S ×Ω. As shown in the next sections, the augmented state space will
only serve as theoretical construct and fortunately will not appear explicitly in our final results.

3.1 Learning policies within options

We need to compute the gradient of the value function VΩ(s̃) ≡ QΩ(s, w) marginalized over the
primitive actions for the policy of an option (referred from now on as the intra-option policy):

∂

∂θ
QΩ(s, ω) =

∂

∂θ

∑
a

πω,θ (a | s)QU (s, ω, a)

QU (s, ω, a) = r(s, a) + γ
∑
s′

P (s′ | s, a)U(s′, ω) (5)

U(s, ω) = (1− βω(s))QΩ(s, ω) + βω(s)VΩ (6)

We will refer to QU in (5) as the option-value function upon arrival 1 since r(s, a) is the reward
accrued upon arrival in s′ and where, by the execution model of options, termination of the current
option is allowed. Note that the option-value function could be recovered from QU by summing
over the primitive actions:

QΩ(s, ω) =
∑
a

πω (a | s)QU (s, ω, a) (7)

The derivation of the gradient (omitted for lack of space) then relies on simple calculus and on
recognizing the k-steps augmented transition probabilities in the expansion. This observation allows
us to transform the recursion into an expectation over the stationary distribution in the augmented
state space.

Theorem 1 (Intra-option policy gradient theorem). Given a set of fixed Markov options and a fixed
policy over them, in the start-state formulation,

∂QΩ(s0, ω0)

∂θ
= E

(s,ω)∼µ

{∑
a

∂

∂θ
πω,θ (a | s)QU (s, ω, a)

∣∣∣∣∣ s0, ω0

}
(8)

Proof: Provided in a separate appendix.

1The choice of notation and expression upon arrival is in reference to equation 20 of Sutton et al. [1999] in
the derivation of the intra-option learning algorithm.

3



Intuitively, the presence of QU in the gradient stems from the need to account for the change in the
expected value over the options given a change at the primitive level. This idea contrasts with the
local nature of pseudo-reward methods in which option improvement is generally oblivious to its
global effect.

When dealing with large action spaces, the summation over actions within the expectation in (3.1)
can be cumbersome. Fortunately, we can get rid of it by a change of probability measure [Rubinstein
et al., 2007] and a simple calculus trick. The intra-option policy gradient theorem can then be written
as:

∂QΩ(s0, ω0)

∂θ
= E

(s,ω)∼µ

{
E

a∼πω

{
∂

∂θ
log πω,θ (a | s)QU (s, ω, a)

∣∣∣∣ s, ω} ∣∣∣∣ s0, ω0

}
This transformation has often been exploited in a similar context, e.g. by Williams [1992]; Peters et
al. [2005]; Degris et al. [2012]; Silver et al. [2014] .

3.2 Learning to terminate

We will now turn our attention to the problem of computing gradients for the option termination
functions. To avoid introducing additional symbols, we will overload our notation and write βω,θ to
stand for the termination function of the Markov option ω pararameterized by θ. In this case, we will
think of the intra-option policies as being fixed and having their own, separate set of parameters.

Theorem 2 (Termination gradient theorem). Given a set of fixed Markov options and a fixed policy
over them, in the start-state formulations,

∂QΩ(s0, ω0)

∂θ
= E

(s,ω)∼µ

{
∂βω,θ(s)

∂θ
(VΩ(s)−QΩ(s, ω))

∣∣∣∣ s0, ω0

}
(9)

Proof: Provided in a separate appendix.

This result suggests an interesting interpretation in terms of the advantage function [Baird, 1993].
Defined over options, the advantage function is the difference: AΩ(s, ω) ≡ QΩ(s, ω) − VΩ(s).
The termination gradient (9) then becomes the expectation of the product of the gradient of the
termination function and the negative of the advantage function over options. When the option
choice is suboptimal with respect to the expected value over all options, the negative of the advantage
function is positive and drives the gradient corrections up at a particular state. This has the effect of
increasing the odds of terminating that particular state, which in turn allow the agent to pick a better
option.

This result also seems to agree with the original intuition behind interrupting options [Sutton et al.,
1999] which consists in forcing termination whenever the value of QΩ(s, ω) for the current option
ω is less than VΩ(s). Mann et al. [2014] recently studied the interruption mechanism as a form of
interrupting Bellman Operator. We believe that our result could also be be understood under this
view, as a gradient-based interrupting Bellman Operator.

4 Option-critic architecture

The algorithmic implementation of theorems 1 and 2 gives rise to the option-critic learning architec-
ture (fig. 1), in reference to the gradient-based actor-critic architectures [Sutton, 1984; Peters et al.,
2005; Degris et al., 2012]. Although option-critic is conceptually identical to actor-critic, we sought
to make a distinction between our holistic approach to learning options and one in which intra-option
policies would be learned with regular policy gradient methods in a pseudo-reward context.

Since two types of gradients are needed to learn the options, the critic part of the option-critic
architecture consists in QU (s, ω, a) or the negative advantage function (or both). In this work, we
do not seek to use a critic for learning the policy over options. Note that the problem of learning
a parametrized policy over options can be solved readily using the policy gradient theorem (see
section 2). Using options has the advantage of reducing a large (potentially continuous) set of
primitive actions to a potentially much smaller set of discrete options. In this case, the policy over
options can be found using planning methods over the options models.

4



πΩ

QU , AΩ

Environment

atst

πω0
, βω0

rt

Gradients

Critic
TD error

ωt

Options

Behavior policy

Figure 1: The option-critic architecture consists of a set of options, a policy over them and a critic.
Gradients can be derived from the critic for both the intra-option policies and termination functions.
The execution model is suggested pictorially by a switch ⊥ over the contacts (. Switching can
only take place when a termination event is encountered.

4.1 Learning values upon arrival

The intra-option policy gradient theorem involves the option-value function upon arrival QU which
is defined in terms of the the reward and primitive transition functions (assumed generally to be
unknown or unknownable). Fortunately, we can easily devise an hybrid learning approach of us-
ing model-free updates which rely on current estimates of QΩ and VΩ (potentially derived from a
planner). A temporal-difference learning approach yields the following TD(0)-like update:

δt =
(
r(s, a) + γU(s′, ω)− Q̂U (s, ω, a)

) ∂

∂θ
Q̂U (s, ω, a) (10)

The above equation can be incorporated within a stochastic gradient descent scheme for updating
the parameters of Q̂U (s, ω, a), represented by either a linear or non-linear differentiable function
approximator. Planning or learning methods can be used to obtain QΩ and πΩ, which can then be
used to form the U term (6) in (10).

5 Experiments

In order to illustrate our approach, we present some preliminary experiments in the four-rooms
domain [Sutton et al., 1999]. We fixed the initial state in the upper left corner and defined a terminal
state in the lower right corner. A penalty of -1 is incurred at every step and for every action taken
in the direction of a wall (resulting in a non-elastic collision). Primitive actions are defined as the
one-step transitions to the next cell in each of the four cardinal directions: north, east, west, south.
Any action may fail with probability 0.1, in which case the agent simply remains in the same state.

In order to focus on the gradient optimization scheme, we chose not to learn the options models
from samples, but to compute them directly from the MDP model. The optimization procedure
implemented (cf. Sections 5.1 and 5.2) is the following:

Repeat:

1. Compute the options models

2. Derive πΩ, QΩ by planning over the options models using value iteration

3. Compute the expected values upon arrival QU using QΩ, πΩ and the true MDP

4. Sample a given number of trajectories using the current set of options Ω and πΩ

5



5. Perform a step of intra-option or termination gradient update for every sample of collected
experience

5.1 Fixed subgoals conditions

(a) Four-rooms domain (b) VΩ(s)
100 101 102 103

10

8

6

4

2

0

2

100 simulation

10 simulations

1 simulations

MDP baseline

(c) VΩ(0) vs optimization steps

Figure 2: Four-rooms domain overlaid with a deterministic optimal MDP policy. The blue color
is for wall cells, the green cell corresponds to the initial state and the red one is a goal state. The
initation set of option 1 is highlighted with the color yellow. The circles represent the subgoal states
for option 0

We first studied the behavior of the intra-option policy gradient algorithm when the initiation sets
and subgoals are fixed by hand. In this case, options terminate with probability 0.9 in a hallway
state and four of its incoming neighboring states (see figure 2a). We found necessary to define the
subgoals not just at the hallway state for stability of learning. For example, if the action to go east
at the north door would suddenly switch toward the wall, the agent would get stuck in that room.
This would block the backups from reaching the initial state and make learning unstable. We fixed
the termination probabilities to 0.9. Initiation sets were defined for every room and augmented with
the subgoal states of the surrounding options to maintain the ability to chain options. We chose to
parametrize the intra-option policies using the softmax distribution:

πω (a | s) =
expθ

ᵀ
π,ωϕ(s,a)∑

a′ expθ
ᵀ
π,ωϕ(s,a)

∂

∂θ
log πω (a | s) = ϕ(s, a)− E

a′∼πω
{ϕ(s, a′) | s}

where ϕ is a state-action basis function. In our experiments, we used a simple a one-hot encoding
of state-action pairs as basis functions, but we could also extend such softmax policies to deep
energy-based ones as demonstrated by Heess et al. [2012].

We fixed the learning rate to 0.02 and evaluated our algorithm over 1000 optimization steps. The
learning curves shown in 2c were computed for 1, 10 and 100 trajectories (optimization step 4) and
a fixed maximum number of steps per trajectory of 100. Figure 2c shows the value estimate of the
current set of options from state 0 for the three different conditions. Note that for this environment,
the MDP value from the same state is an upper bound on the achievable return with our options.
With a discount factor set to 0.9, we computed the MDP solution using value iteration and found
the value from the initial state to be 1.91304. The intra-option policy gradient approaches the MDP
solution given more optimization steps and sampled trajectories. Figure 2b shows the value function
VΩ after 40 optimization steps with 10 Monte-Carlo simulations per optimization step. We see that
most of the value from the goal state had already been propagated backwards to the initial state
through option 0 (upper left), 1 (upper right), and 3 (lower right).

5.2 Learning both internal policies and terminations

In this experiment we tried to learn the option policies simultaneously with the termination functions.
We set the learning rates for both to 0.05. We used the same softmax parametrization as in the
previous experiment but chose to represent the termination functions using the hyperbolic tangent
function:

βω(s) = tanh(θᵀβ,ωϕ(s))
∂

∂θ
βω(s) = (1− tanh2(θᵀβ,ωϕ(s)))ϕ(s)

6



(a) VΩ(s) (b) βω0(s)
100 101 102 103 104

10

8

6

4

2

0

2

100 

10 

1 

MDP

MDPAC

(c) VΩ(0) vs optimization steps

Figure 3: Simultaneous learning of option policies and termination functions

where ϕ was once again defined as a one-hot encoding. We initially experimented with the sigmoid
function but found that it would be more sensitive to the weight initialization method. With zero
weights, the sigmoid function would initially return termination probabilities of 0.5. This led to
more switching events and the optimization process tended to diffuse the termination gradients over
more states. With the tanh funtion on the other hand, the termination probabilities start at 0 with
zero-initialized weights. This helps exploration by allowing the agent to commit to its options for a
longer time, and eliminates chattering in the final policy over options. Fixing the initiation sets as in
the previous experiment also helped to keep the learning away from degenerate solutions. The agent
converges to a policy over options taking an option in room 0, followed by a second one through
rooms 2 and 3. The termination probabilities for option 0 are shown in 3b and seem to agree with
our intuition of hallways as being useful subgoals.

We also compared the option-critic approach to an MDP-based actor-critic one with a single softmax
policy over primitive actions. As for the other experiments, we used a tabular representation for the
basis functions, computed the critic QA(s, a) exactly and we set the learning rate to 0.05. We
sampled one trajectory after every step of exact policy evaluation and used it to update the policy
parameters. Under these conditions, the algorithm starts converging to the target value after 4000
steps (see “MDPAC” in 3c) compared to the 1000 steps of the options-based.

6 Discussion and related work

Theorems 1 and 2 provide a principled approach to learning options. However, without a biasing
mechanism, optimizing just the return objective would lead in the limit to a solution based on primi-
tive actions only. This degenerate solution could take the form of a diverse set of one-step options or
one in which a single dominating option decides over the entire state space. While this type of solu-
tion is provably optimal for solving a single MDP, it is contrary to our intuitions that options should
stay extended in time. This might arise naturally in a setting in which the agent’s task changes over
time, or might be induced through a reward-like differentiable regularizer. For example, a penalty
could be incurred whenever a switching event occurs in order to favor commitment during option
execution. The idea of regularizing options has recently been studied by Mann et al. [2014] in the
context of interrupting options [Sutton et al., 1999]. Theorem 2 might allow for some of these results
to be generalized to continuous spaces.

As we observed in our first experiment with the fixed subgoals, it is rather crucial to maintain “chain-
able” or composable options. As part of future work, we would also like to express composability
as part of the optimization criterion as well.

Comanici and Precup [2010] also considered the problem of improving the termination function
but for the case of semi-Markov options modelled by a logistic distribution over the accumulated
features since initiation. The idea of compositionality of options was leveraged by Silver and Ciosek
[2012] to dynamically chain options through successively longer temporal abstractions. Levy and
Shimkin [2011] adapted the Natural Actor-Critic [Peters et al., 2005] framework to learning options
by taking a literal approach to the augmented state space construction. The termination problem
was treated by viewing stopping events as additional control actions available to the agent. While

7



theoretically correct, the explicit construction of the augmented state and action spaces hides some
of the useful semantics that we have been able to expose directly with our results.

7 Conclusion

We presented two new results which allow the gradient of the policies within options and the ter-
mination functions to be computed so as to optimize the expected discounted return. We can then
iteratively improve the set options with these gradients, which allows differentiable, linear or non-
linear, stochastic parametrization of options. Our option-critic approach retains the architectural
properties of its actor-critic parent. It addresses the need to handle continuous action spaces and
reuse knowledge about values in a decoupled manner. We believe that the gradients expressions de-
rived in this paper might open the way for the end-to-end training of reinforcement learning agents
capable of simultaneously learning a representation of the features [Mnih et al., 2013] and of tempo-
rally extended actions for control. Future work should address the problem of designing regularizers
to induce certain desirable properties for the options, such as commitment, composability, or mem-
ory constraints. The convergence of our optimization approach is also unknown and some analysis
along the lines of the two-timescale approach might be needed (see [Konda and Tsitsiklis, 2004] for
the linear case). We are confident that our results could easily be carried to deterministic policy gra-
dient [Silver et al., 2014] as well as in to off-policy [Degris et al., 2012] or natural gradient settings
[Peters et al., 2005].

References
Leemon C. Baird. Advantage updating. Technical Report WL–TR-93-1146, Wright-Patterson Air

Force Base Ohio: Wright Laboratory, 1993.

Gheorghe Comanici and Doina Precup. Optimal policy switching algorithms for reinforcement
learning. In AAMAS, pages 709–714, 2010.

Thomas Degris, Martha White, and Richard S. Sutton. Linear off-policy actor-critic. In ICML, 2012.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decom-
position. J. Artif. Intell. Res. (JAIR), 13:227–303, 2000.

Nicolas Heess, David Silver, and Yee Whye Teh. Actor-critic reinforcement learning with energy-
based policies. In EWRL, pages 43–58, 2012.

Vijay R. Konda and John N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic approx-
imation. The Annals of Applied Probability, 14(2):796–819, 2004.

George Konidaris, Scott Kuindersma, Roderic A. Grupen, and Andrew G. Barto. Autonomous skill
acquisition on a mobile manipulator. In AAAI, 2011.

Kfir Y. Levy and Nahum Shimkin. Unified inter and intra options learning using policy gradient
methods. In EWRL, pages 153–164, 2011.

Timothy Arthur Mann, Daniel J. Mankowitz, and Shie Mannor. Time-regularized interrupting op-
tions (TRIO). In ICML, pages 1350–1358, 2014.

Amy McGovern and Andrew G. Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. In ICML, pages 361–368, 2001.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut - dynamic discovery of sub-goals in
reinforcement learning. In ECML, pages 295–306, 2002.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

Scott Niekum and Andrew G. Barto. Clustering via dirichlet process mixture models for portable
skill discovery. In Lifelong Learning, Papers from the 2011 AAAI Workshop, San Francisco,
California, USA, August 7, 2011, 2011.

Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic. In ECML, pages 280–291,
2005.

8



Doina Precup. Temporal abstraction in reinforcement learning. PhD thesis, University of Mas-
sachusetts, Amherst, 2000.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., 1994.

Rubinstein, Reuven Y., and Dirk P. Kroese. Simulation and the Monte Carlo Method (Wiley Series
in Probability and Statistics). 2 edition, 2007.

G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Technical Report
CUED/F-INFENG/TR 166, Cambridge University Engineering Department, 1994.

David Silver and Kamil Ciosek. Compositional planning using optimal option models. In ICML,
2012.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin A. Riedmiller.
Deterministic policy gradient algorithms. In ICML, pages 387–395, 2014.

Özgür Simsek and Andrew G. Barto. Using relative novelty to identify useful temporal abstractions
in reinforcement learning. In ICML, 2004.

Özgür Simsek and Andrew G. Barto. Skill characterization based on betweenness. In NIPS, pages
1497–1504, 2008.

Jonathan Sorg and Satinder P. Singh. Linear options. In AAMAS, pages 31–38, 2010.
Martin Stolle and Doina Precup. Learning options in reinforcement learning. In Abstraction, Re-

formulation and Approximation, 5th International Symposium, SARA 2002, Kananaskis, Alberta,
Canada, August 2-4, 2002, Proceedings, pages 212–223, 2002.

Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artif. Intell., 112(1-2):181–211, 1999.

Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In NIPS, pages 1057–1063.
2000.

Richard Stuart Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, 1984.
Richard S. Sutton. Learning to predict by the methods of temporal differences. Mach. Learn.,

3(1):9–44, 1988.
Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART

Bulletin, 2(4):160–163, 1991.
Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD thesis, Cam-

bridge, 1989.
Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine Learning, 8:229–256, 1992.

9


