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Summary

•From the point of view of absolute optimality, temporal
abstractions in reinforcement learning are not necessary.

•We propose bounded rationality as a lens through which we can
describe the desiderata for constructing temporal abstractions.

•We formalize the idea that good options are those which result in
fast planning (or inference).

Options framework

Options (Richard S. Sutton, Precup, and Singh, 1999) formalize
the idea of temporally extended actions (also sometimes called
skills or macro-actions).

A Markovian option ω ∈ Ω is a triple 〈Iω, πω, βω〉:
• Initiation set Iω ⊆ S
•Policy πω (stochastic or deterministic)

•Termination function βω : S → [0, 1].

Deliberation cost

We define the cost of a one-step backup for Q?
Ω(s, ω):

c(s, ω) =
∑
s ′

1P(s ′ | s,ω)>ε|Ω(s ′)|

where ε ∈ [0, 1] is a constant that can be used to allow next
states to be ignored (or, can be set to 0 if we want to take into
account all successor states).

Cost of a trajectory
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In our model, there is no deliberation cost incurred within an
option once initiated. During the option’s execution, its policy will
be in effect and choices do not require any deliberation.

Expected value of control

We define a joint objective which expresses the desire to seek
reward under a reasonable deliberation (or cognitive) effort:

QVC(s, ω) = QΩ(s, ω) + ξQc(s, ω)

where ξ controls the trade-off between value and computation
cost.

Experiments

(a) Four-rooms domain
(Richard S. Sutton, Precup,
and Singh, 1999)
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(b) Number of options recruited by πΩ

as a function of ξ
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(c) The error in planning with
regularized options decreases faster
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(d) Replanning cost for different
perturbation levels

We optimized a set of four options under the option-critic
architecture (Bacon and Precup, 2015). For larger values of ξ in
the expected value of control, the policy over options uses more
temporally extended actions (fig. 1b). The root mean square error
in VΩ decreases faster with a set of options optimized with a
larger ξ and leads to faster planning (fig. 1c). Stronger
regularization also protects against perturbations in the MDP.
Figure 1d) shows the number of replanning steps for different
noise levels in the MDP.

Unified view

•The deliberation concept subsumes dedicated cost functions for
switching and commitment.

•Reiterates the idea that simple options (Maisto, Donnarumma,
and Pezzulo, 2015) are preferable

•Low deliberation corresponds to sparse option models

•Smaller set of terminating states imples less variance in the sample
backups (R. S. Sutton and Barto, 1998) (cheaper by definition)

•Sparse models (especially in linear form) are computationally
cheaper than dense ones

• In a partially observable setting, sparse models would skip over
regions of the state space with high uncertainty.

•Robustness: Qc(s, ω) can be interpreted as the average replanning
cost. ξ controls the degree of robustness against perturbations.

Future work

•Study the relationship with the successor state representation of
Dayan, 1993

•Learn initiation sets for options: we need to be able to “chain”
options together

•Model-free setting: a new definition for the deliberation cost
might be necessary

• Interplay of our deliberation cost with value function approximation
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