
Learning with options: Just deliberate and relax

Pierre-Luc Bacon and Doina Precup
McGill University

{pbacon, dprecup}@cs.mcgill.ca

1 Introduction
Bounded rationality is a very important framework for understanding rationality in both natural
and artificial systems. In this paper, we aim to bridge the gap between bounded rationality and
reinforcement learning, which has also proven very fruitful in both types of intelligent systems.
A lot of reinforcement learning work has focused on Markov Decision Processes, where optimal
policies can be obtained under certain assumptions. However, optimality does not take into account
possible resource limitations of the agent, which is assumed to have access to a lot of data and
computation time. One approach for reducing the costs of such agents has been to provide them with
temporally extended actions and models, which allow policies to be computed faster, cf. [Dietterich,
2000; Precup, 2000]. However, the problem of automatically finding good temporal abstractions
has proven very difficult. Part of this difficulty stems from the fact that from the point of view
of absolute optimality, temporal abstractions are not necessary: the optimal policy is achieved by
primitive actions. Therefore, it has been difficult to formalize in what precise theoretical sense
temporally abstract actions are helpful.

In this paper, we propose bounded rationality as a lens through which we can describe the desiderata
for constructing temporal abstractions, as their goal is mainly to help agents which are restricted
in terms of computation time. Using this perspective helps us to formulate objective optimization
criteria that should be fulfilled during option construction. We use the options framework [Sutton
et al., 1999; Precup, 2000] in order to implement this idea. We propose that good options are
those which result in fast planning (or inference), and provide an optimization objective for learning
options based on this idea. We implement the optimization using a newly developed option-critic
[Bacon and Precup, 2015] framework and illustrate its usefulness with experiments in a synthetic
navigation domain.

2 Options framework
Options [Sutton et al., 1999; Precup, 2000] formalize the idea of temporally extended actions, also
sometimes called skills or macro-actions, by endowing agents with the ability to plan and learn
simultaneously at different levels of temporal abstraction. A Markovian option ω ∈ Ω is a triple
〈Iω, πω, βω〉 consisting of an initiation set Iω ⊆ S , a a policy πω and a termination function βω :
S → [0, 1]. In the call-and-return execution model, the agent picks an option ω out of a set of
options Ω according to its policy over options πΩ, and subsequently uses the policy of the chosen
option, πω until it terminates, according to βω , at which point this procedure is repeated. Each
option has a reward model, which gives the expected total discounted return that can be obtained by
executing it to termination. Similarly, for each option, its transition model expresses the discounted
probability of transitioning to different states upon termination.

Semi-Markov Decision Processes (SMDPs) [Puterman, 1994] provide a theoretical framework for
planning using models of options. Both reward and transition models are also amenable to learning
or planning Sutton et al. [1999].

3 Deliberation cost
In planning context, the goal of having options is to enable faster decisions. Suppose for now that
the options and their models are given, and we are just using them to compute the value function /
policy over options. In this case, most of the computational expense will come from querying the
model to obtain the successor states and backing up their values. The number of successor states is a
function of the branching factor of the MDP, while the number of backups depends on the available

1

Primitive

Multi-steps

Time

Figure 1: Trajectory at the primitive action level versus the SMDP level. Circled dots are decision
states where a deliberation cost is incurred. In our model, there is no deliberation cost incurred
within an option once initiated.

actions at a given state. Therefore, we define the cost of a one-step backup for Q?(s, ω) simply as:

c(s, ω) =
∑
s′

1P(s′ | s,ω)>ε|Ω(s′)|

where ε ∈ [0, 1] is a constant that can be used to allow next states to be ignored (or, can be set to 0
if we want to take into account all successor states).

Since this quantity is only state and option dependent, we can use it as a cost, and compute a value
function over these:

Qc(s, ω) = −c(s, ω) + γ
∑
s′

P (s′ | s, ω)
∑
ω′

πΩ (ω′ | s′)Qc(s′, ω′) (1)

where the minus sign denotes costs instead of rewards. Qc could be found by value iteration (if a
model is given) or can be computed by any other usual reinforcement learning approach.

3.1 Deliberate and relax
Aside from the backup operation, in the call-and-return execution model, the only other costs are
incurred at the time of choosing an option, when all choices have to be considered. During the
option’s execution, its policy will be in effect and choices do not require any deliberation (see Fig. 1).
Hence, from the computational expense point of view, the agent deliberates and then relaxes until
the next decision point. This should be contrasted with the usual primitive options, defined for
each primitive action as the option whose policy deterministically returns that action at every state
and which terminates deterministically after one step. Primitive options require deliberation, and
hence incur computation costs at every step. In general, more frequent termination, as determined
by the termination functions, implies a higher rate of deliberation. The deliberation cost therefore
subsumes dedicated switching or commitment cost functions and expresses the general view that
simple options [Maisto et al., 2015] are preferable.

As defined, low deliberation cost also corresponds to sparse option models, for which the set of
possible terminating states is smaller. This can prove beneficial in a learning setting, where sample
backups substitute the full model-based ones (section 9.5 of Sutton and Barto [1998]). Sample
backups are inherently cheaper by this definition. When expressing the options models in linear
form, sparse matrices can also provide a computational speedup compared to dense ones. In a
partially observable setting, options with sparse models would skip over regions of the state space
with high uncertainty, transitions would be closer to deterministic and might provide the agent with
an opportunity to better update its belief upon termination.

Finally, since the instantaneous deliberation cost measures the effort involved in one full backup,
its expectation along the stationary distribution of some policy could be thought of as the average
replanning cost. Replanning can be necessary to deal with perturbations coming from either model
mis-specification or the non-stationary nature of a task. For sufficiently small perturbations, the one-
step backup might provide sufficient correction, while larger perturbations would warrant spending
more time to replan and correct.

3.2 Objective function
We now define a joint objective which expresses the desire to seek reward under a reasonable delib-
eration (or cognitive) effort:

QV C(s, ω) = QΩ(s, ω) + ξQc(s, ω) (2)

2

where ξ is a scalar controlling the tradeoff between value and computation cost. Such a tradeoff
between value and control is a central idea in the bounded optimality framework and has been
referred to as the expected value of control [Shenhav et al., 2013].

If the agent has at its disposal both primitive and temporally extended options, as ξ goes to 0, the
value of QΩ dominates and favours policies which use only primitives. Increasing ξ emphasizes the
expense of deliberation and favours recruiting more multi-steps options.

3.3 Optimization
The goal of finding a good set of options can now be specified as optimizing objective (2). Intu-
itively, the optimization involves searching through the space of possible option sets for one which
maximizes QV C . This optimization could be solved in various ways, depending how we define
the space of possible options. We leverage recent results on gradient-based optimization for op-
tions [Bacon and Precup, 2015] to provide an incremental algorithm for constructing options from
data. The option-critic architecture extends the actor-critic architecture [Sutton, 1984] and policy
gradient theorem [Sutton et al., 2000] for the purpose of learning options. An assumption of this
framework is that options policies and termination functions can be parametrized with stochastic
and differentiable functions. If these conditions are met, it provides gradients for any reward-like
objective with respect to the parametrization. We note, however, that the general approach does not
depend on using this type of optimization.

4 Illustration

10−6 10−5 10−4 10−3 10−2 10−1 100

Deliberation tradeoff ξ

0

1

2

3

N
um

be
r

of
m

ul
ti-

st
ep

s
op

tio
ns

us
ed

by
π

Ω

All options
Only primitives
Policy

(a) Number of options recruited by
πΩ as a function of ξ

0 10 20 30 40 50
Number of iterations

0

50

100

150

200

250

300

350

R
M

SE

ξ =0.1
ξ =0.01
ξ =0.0001
Primitives

(b) The error in planning with reg-
ularized options decreases faster

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Failure rate

20

40

60

80

100

120

140

R
ep

la
nn

in
g

st
ep

s

ξ =0.1
ξ =0.01
ξ =0.0001
Primitives

(c) Replanning cost for different
perturbation levels

To illustrate these ideas, we conducted preliminary experiments in the four-rooms navigation do-
main [Sutton et al., 1999]. Primitive actions are moves in the four cardinal directions. Any action
fails with probability 0.1, in which case the agent simply remains in the same state. A penalty of -1
is incurred at every time step. We fixed the initial state in the upper left corner and defined a terminal
state in the lower right corner.

In a first experiment, we defined an option for each room, terminating at one of the hallway states.
We learned the option policies (parametrized by the softmax distribution) over 1000 iterations of
the option-critic architecture. We then augmented the set of learned hallway options with primitive
actions and planned an optimal policy by policy iteration. In each step of policy iteration, QΩ

and Qc are computed by policy evaluation for the current candidate policy over options. Figure 2a
shows that as the cost of deliberation increases, the optimal policy over the joint objective discards
primitive options in favor of the temporally extended (hallway) options, as expected.

We also investigated whether the deliberation cost would impact the structure of the policies when all
components are learned simultaneously: policies within options, termination functions and policy
over options. In fact, we would hope that our objective would provide a speedup when planning
with primitive actions augmented with the learned options. As opposed to the previous experiment,
options were not pre-designed beyond the choice of parametrization: softmax for the policies and
tanh for the terminations. We computed the optimal policy over the MDP by value iteration and
augmented the set of options with primitives. We then computed the root mean square error (RMSE)
to the optimal value function at every planning step over the augmented set of options. When the
deliberation cost is increased through ξ, we see in Fig. 2b that the structure of the learned options
changes in such a way as to obtain faster planning later on.

3

Finally, we tested our intuition that our objective can capture the effort for replanning in case of
model perturbations. The set of options used in the previous experiments was learned in an envi-
ronment with 10% chance of failure for any action. Without re-learning them, we attempted to used
them for speeding up planning at different noise levels. Fig 2c shows that large values of ξ provide
more robustness against perturbations.

5 Discussion
While the results we presented are preliminary, the generality of the proposed objective function and
its ability to capture intuitively the qualities of a good set of options are very encouraging. The results
we obtain are in line with other recent ideas proposed for regularizing options [Mann et al., 2014].
We anticipate that the same approach can be used to learn initiation sets for options, a problem that
has been barely touched in existing work. The main idea is that we would like at each state to have
a limited set of options, but at the same time, we need to be able to “chain” options together (also
referred to as compositionality [Precup et al., 1998; Silver et al., 2014; Sorg and Singh, 2010]). The
computation cost definition takes into account the number of successors of a state, which suggests it
might be worth investigating connections to successor-state representations [Dayan, 1993]. Finally,
this model provides an opportunity to define good options in the presence of function approximation,
by providing a natural way to include the cost of evaluating such approximators (eg. deep nets).

References
P-L. Bacon and D. Precup. The option-critic architecture. In preparation, 2015.
P. Dayan. Improving generalisation for temporal difference learning: The successor representation.

Neural Computation, 5:613–624, 1993.
T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition.

J. Artif. Intell. Res. (JAIR), 13:227–303, 2000.
D. Maisto, F. Donnarumma, and G. Pezzulo. Divide et impera: subgoaling reduces the complexity

of probabilistic inference and problem solving. Journal of The Royal Society Interface, 12(104),
2015.

T. A. Mann, D. J. Mankowitz, and S. Mannor. Time-regularized interrupting options (TRIO). In
ICML, pages 1350–1358, 2014.

D. Precup, R. S. Sutton, and S.P. Singh. Theoretical results on reinforcement learning with tempo-
rally abstract options. In ECML, pages 382–393, 1998.

D. Precup. Temporal abstraction in reinforcement learning. PhD thesis, University of Mas-
sachusetts, Amherst, 2000.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., 1994.

A. Shenhav, M. Botvinick, and J. D. Cohen. The expected value of control: An integrative theory of
anterior cingulate cortex function. Neuron, 79(2):217 – 240, 2013.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin A. Riedmiller.
Deterministic policy gradient algorithms. In ICML, pages 387–395, 2014.

J. Sorg and S. P. Singh. Linear options. In AAMAS, pages 31–38, 2010.
R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press, 1998.
R. S. Sutton, D. Precup, and S. P. Singh. Between MDPs and Semi-MDPs: A framework for

temporal abstraction in reinforcement learning. Artif. Intell., 112(1-2):181–211, 1999.
R. S Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for reinforce-

ment learning with function approximation. In NIPS, pages 1057–1063, 2000.
R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University of

Massachusetts, Amherst, 1984.

4

