Temporal Abstraction in Reinforcement
Learning

Pierre-Luc Bacon and Doina Precup

February 17, 2017

step

!

O—e—O—e-—0

step

o—O—e—O—e—0

O—e ...

wwwwwwww

Multi-steps Boostrapping

“[...] they free you from the tyranny of the time step.”

In S&B 2017, chapter 7

Multi-steps Boostrapping: key idea

The n-step return estimator is defined as:

ng) =R+ YRis1+ ..+ 7" Riyn1 + 7" Vitn—1(Se4n)

we then use it as an update target for TD:

Vien(St) = Vign—1 + (ng) - V2+n—1(5t)>

3/26

Forward view

The n-step return estimator depends on future rewards, despite
being defined at time t. How do we deal with that ?

1. Wait (batch updating)

2. Use eligibility traces (we’ll see this in a few weeks)

3. Use n-steps models

Model-based RL: recap

Environmental S \ lannin
interaction At LV °

Direct RL

methods Value
‘unction

5/26

Planning: indirect RL
Key idea
We learn models from data, and plug them back into our
Bellman equations.

Remember: with the true r; and Py, we have:

v="rr+vPv

Let b be an approximation of r, and F' the model for P;:

v=b+~vyFv

We can then solve for v with :
1. DP methods
2. Sample-based TD methods (Dyna belongs here)

Dyna

LN

/7 \
P/olicy/value functjons

planning update

direct RL simulated

update experience
real
experience
search
|earning ContrOI
Model

[Environmentj

Sutton 1995: n-steps models

As appeared i

Proceedings of the 12th Int. Conf._on Machine Learning, 531-539, Morgan Kaufmann, 1595

TD Models: Modeling the World at a Mixture of Time Scales

Richard S. Sutton
Stow Resear
sutton@gte.com

Abstract

Temporal difference (TD) learning can be

poral abstraction within a single structure
Such multi-scale TD models can be used
model based reinforcement learning architec
tures and dynamic programming methods in
place of conventional Markov models. This
enables planning at higher and varied levels
of abstraction, and, as such, may prove use
ful in formulaling methods for hierarchical or
multilevel planning and reinforcement learn.

ing. In thi paper we treal only the Dudlc
tion problem that of learning & model and
e oneon o the. cone of o agent be
havior. Within this context, we establish the
theoretical foundations of multi-scale mod-
els and derive TD algorithms for learning
them. Two small computational experiments
are presented to st and illustrate the theary.
This work is an extension and generalization
of the work of Singh (1992). Dayan (1993),
and Sutton & Pinette (1985]

Multi-Scale Planning and Modeling

Model-based seinforcement learning offers a poten-
tally_elegant_solution to_the problem of inicgral
ing_ planning into a real-time learning and decision-
making agent (Sutton, 1990; Barto et al, 1835, Feng
& Willams, 1883, Moore & Atkeson, 1934; Dean ot
al, in prep ez, most current_ reinforcement

consequences become available after one step. This
makes it difficult to learn and plan at different time

scales. For example, commuting to work involves plan-
ning at a high level about which route o drive (or
whehr s take U rin)and . Low ev]about b
10 steer, when to brake, etc. Planning is necessary at
bnth el i order to ptinias precioelow eve mere.
ments without becoming lost in a sea of detail when
‘making decisions at a high level. Morcover, these lev-

‘moment-by-moment decisions at the lowest level.

The need for hierarchical and abstract planning is a
fundamental problem in Al whether or ot one uses

al., 1972; Sacerdoti, 1977; Kuipers, 1979; Laird et
al, 1986; Korf, 1985; Minton, 1985; Watkins, 1989,
Drescher, 1991; Ring, 1381; Wixson, 1991; Schmidhu-
ber, 1991; Tenenberg et al, 1992; Kaelbling, 1993; Lin,
1993; Dnylnkl-lmmn 1963; Dejong, 1994; Chrisman,

TD methods are used, the predictions of the models
can naturally extend beyond a single time step. As we
will show, they can even make predictions that are not

ecific 1o a single time scale, but intermix many such
scales, with no loss of performance when the models
are used. This approach is an extension of the ideas
of Singh (1992), Dayan (1993), and Sutton & Pinette

Most prior work on multi-scale modeling has focused
on state abstraction: Which sets of states can be
iables can be ignored?
s a good form of generalization between states?

paper we instead focus exclusively on the rela-
el nored e aspects of abstraction. In fact,
we will assume cach state is recognized and treated as

treated as a gr

8/26

Bellman equations for 2-steps models
Let’s expand v once:

v=ry+vPv
=rr+ ’YPW(TW + ’YPWU)
=rr+vPrrx + nyPEv

Define the 2-step reward model as:
b=y + YPrra
and the 2-step transition model:
F®=,2p?2
The Bellman equation can then also be written as:
v=">b3 4 F?y

(The gamma term is folded in F'. A matter of taste...)

n-steps models

b(n): (7P7r)t'r7r F(n)Z(VPw)n

And once again, the Bellman equations still hold:
v="b" 4 FMy

Question : what happens as n — oo 7

10 / 26

Fun fact: model composition

Homogeneous coordinates
Computer graphics, vision, animation people: this is a familiar
idea.

Dz u1l w2 w1z x| |
Py| _ |u21 w2 uzz ty| |y
Dz usl usy usz tr| [z

1 0 0 0 1 1

where the u;; are elements of a rotation matrix and [t,,t,,t.] is
a translation vector.

Bellman equations in homogeneous form

-0 -0

where Py is a block matrix of size n x n (n being the number of
states) and r, is a column vector of size n.

Composing models

- ,YPTI' TTK‘
u=[g]
so that:
v= Mv

A 2-steps models is then:

M@ =p2 = |:'72P7% YPrra + Tﬂ]

0 1
and generally:

MM =pm
and :

v = MMy

Digression: RNN
With M defined as usual:

f(og; (re, vPr))=Mvu

You can now think of the iterates of value iteration as the linear
dynamical system:

Vi1 = f(vr; (7r, Pr))

f is a recurrent neural net ! Your “hidden state” is v;. The
fixed-point is computed by an “infinitely deep” neural net.

Ur = f(f(--f(UD§ (Tﬂ,Pﬁ)); (TﬂaPﬂ))§ (Tmpﬂ)>

Let’s T.grad !

Bengio & al.

1994

Learning Long-Term Dependencies
with Gradient Descent is Difficult

‘Yoshua Bengio, Patrice Simard, and Paolo Frasconi, Sudent Member. IEEE

1 vk cn b v 0

1l conet et o) bt bl i i
ey

oy, . ol i e e the forad popega
sl od i e conuio oy ‘epenonl &

o Standard gradint descent e condere.

L mmoptcTio

Series precicton. Allofthe above applicaions equire a system
that il store

e number of weighis, ke
. ot e setor 2o el i v
e

hat buck-propaali
povetl 10 dicoves coningences spnring lon e

o
amountoftme hat s ot fixed a prior,but
eiEhs and on the input dsa. I conas, sl networks

st n e o e e aertai o i ot
st hree

(st oy el nerwens 15 hve i i
esponse and can'tsore bi o information or an ndefinie

a0 backw
tions 0 compute the required gradic

o gt uch o he forard propaaton sgortms
1141, 231, are much more. computatonally expensive.(for

i i o . o, s,

A (D S o).

sk repbemcns o . et ymanlcl s
can leam 1o stoe relevant stte information. W requie the
following:
1) Tt syt be bl 0 s iformaie o
abitary dur
2) Tho e sy be resiian o e (.., ctusins
of e st e o v et
9 T e e parametes e st i ressonsble

Tt i s e g s o e s
of information into the state variabis of the dynrmic systcm
i wlred o fomaion eichin. A ol of i
concept, based an hyperbolic atracors, i given i Section

By

“The paper s divided into e sctions. Tn Section 11

it such a syster s stable and ressant 10 nise

oss pesaen @ 104

We all want to work with long-term dependencies !

15 /26

Temporal abstraction

]
[

Choosing the type of coffee maker, type of coffee beans

Higher level steps

Medium level steps

Grind the beans, measure the right quantity of water, boil the
water

Lower level steps
Wrist and arm movements while adding coffee to the filter, ...

16 / 26

Temporal abstraction in Al

A cornerstone of Al planning since the 1970’s:

o Fikes et al. (1972), Newell (1972, Kuipers (1979), Korf
(1985), Laird (1986), Iba (1989), Drescher (1991) etc.

It has been shown to :
e Generate shorter plans
e Reduce the complexity of choosing actions
e Provide robustness against model misspecification

e Improve exploration by taking shortcuts in the environment

Frameworks for temporal abstraction in RL: MAXQ

Journal of Artificial Intelligence Rescarch 13 (2000) 227-303 Submitted 11/99; published 11/00

Hierarchical Reinforcement Learning with the MAXQ Value
Function Decomposition

Thomas G. Dietterich TGOS ORST_EDU
Department of Computer Scicnce, Oregon State University
Corvallis, OR 97331

Abstract

This paper presents a new approach to hierarchical reinforcement learning based on de-
composing the target Markov decision process (MDP) into a hierarchy of smaller MDPs
and decomposing the value function of the target MDP into an additive combination of the
value functions of the smaller MDPs. The decomposition, known as the MAXQ decom-
position, has hoth a procedural semantics as a subroutine hierarchy and a declarative
semantics—as a representation of the value function of a hierarchical policy. MAXQ unifies
and extends previous work on hierarchical reinforcement learning by Singh, Kaelbling, and
Dayan and Hinton. It is based on the assumption that the programmer can identify useful
subgoals and define subtasks that achieve these subgoals. By defining such subgoals, the
programmer constrains the st of policies that need to be considered during reinforcement
learning. The MAXQ value function decomposition can represent the value function of any
policy that is consistent with the given hierarchy. The decomposition also creates oppor-
tunities to exploit state abstractions, so that individual MDPs within the hierarchy can
ignore large parts of the state space. This is important for the practical application of the
method. This paper defines the MAXQ hierarchy, proves formal results on its representa-
tional power, and establishes five conditions for the safe use of state abstractions. The paper
presents an onliue mode-fice learuing algorithun, MAXQQ, aud proves that it converges

with probability 1 to a kind of lacally-optimal policy known as a recus optimal policy,
even in the presence of the five kinds of state abstraction. The paper evaluates the MAXQ
representation and MAXQ-Q through a series of experiments in three domains and shows
experimentally that MAXQ-Q (with state abstractions) converges to a recursively optimal
policy much faster than flat Q learning. The fact that MAXQ learns a representation of
the value function has an important benefit: it makes it possible to compute and execute
an improved, non-hierarchical policy via a procedure similar to the policy improvement
step of policy iteration. The paper demonstrates the effectiveness of this non-hierarchical
execution experimentally. Finally, the paper concludes with a comparison to related work
and a discussion of the design tradeoffs in hierarchical reinforcement learning,

18 /26

Frameworks in RL: HAM

Reinforcement L earning with Hier archies of Machines

Ron Parr and Stuart Russell
Camputer SfenceDivison, UC Barkeey, CA 4720
{parr ruseell} @cs berkeley:

Abstract

We present a new approach to reinforcement learning in which the policies considered by the
learning process are constrained by hierarchies of partilly specified machines. This allows for the
use of prior knowledge to reduce the search space and provides a framework in which knowledge
can be trensferred T when o to solve
larger and more complicated problems. Our appmam can be seen s providing a link between
reinforcement learning and "behavior-based” or “teleo-reactive” approaches to control. We present
provably convergent algorithms for problem-solving and learming with hierarchical machines and

Category: reinforcement learning. Preference: plenary.

1 Introduction

Optimal spheresof h thetask
environment. Generally spesking, the only way around intractability has been to provide hierarchical organization
for complex activities Although it can yield suboptimal policies, top-down hierarchical control often reduces the
complexity of decision meking from exponential to linear in the size of the problem. For example, hierarchical task
network (HTN) planners can generate solutions containing tens of thousands of steps 4], wherezs “flat” planners can
‘manage only tensof steps.

HTN use aplan library that high-level activities
intolower-level activities. This i
(Mirkoy decision proccses he uss araughly nlogous form ofpror krowicdge. Weuse errcical abstct
‘which impos by our learning agorithms. HAMs consist
of nondeterminisic finite stete machines whose transitions may invoke lower-level mechines. Nondeterminism is
represiad by chooo sateswhare e upumd action isyet to be decided or learned. The language allows a variety
of p l the way 1o a fully specified solution. One useful
iGmedizto point 576 speifcation of 1% lhegmeal organizaion of behavior nto aayered hierachy, leaving it
extly higher levelsat each

point.
“The paper begins with a brief review of Markov decision processes (MDPS) and a descxiption of hierarchical abstract

19 /26

Frameworks in RL: Options

Artificial
Intelligence

ELSEVIER Avrficial Intelligence 112 (1999) 181-211

v elsevier.com/locatc/artint

Between MDPs and semi-MDPs:
A framework for temporal abstraction
in reinforcement learning

Richard S. SuttoA*, Doina Precuf), Satinder Singh

T Labs -Research, 180 Park Avenue, Florham Park, NJ 07932, USA
© Computer Science Department, University of Massachusetts, Amherst, MA 01003, USA

Received 1 December 1998

Abstract

Learning, planning, and knowledge at temporal abst
longstanding challenges for Al. I this paper we consider how these challenges can e aduressed
within the mathematical framework of reinforcement learning and Markov decision processes
(MDPs). We extend the usual notion of action in this framework to inclopions—closed-loop
policies for taking action over a period of time. Examples of options include picking up an object,
going to lunch, and traveling to a distant city, as well as primitive actions such as muscle twitches
and joint torques. Overall, we show that options enable temporally abstract knowledge and action
to be included in the reinforcement learning framework in a natural and general way. In particular,
we show that options may be used interchangeably with primitive actions in planning methods such
as dynamic proganming and in leaming methods such as Q- \earnmg Formally, a set of options

IDP constitutes a decision DP), f SMDPs
provides 1é foundaton for the theory of oplons. HOWeVRr the most mleveslmg issues concern the
interplay between the underlying MDP and the SMDP and are thus beyond SMDP theory. We present
results for three such cases: (1) we show that the results of planning with options can be used during
execution to interrupt options and thereby perform even better than planned, (2) we introduce new
intra-option methods that are able to learn about an option from fragments of its execution, and
(3) we propose a notion of subgoal that can be used to improve the options themselves. All of these
results have precursors in the existing literature; the contribution of this paper is to establish them
in a simpler and more general setting with fewer changes to the existing reinforcement learning
framework. In particular, we show that these results can be obtained without committing to (or ruling
out) any particular approach to state abstraction, hierarchy, function approximation, or the macro-
utilty problem. 1 1999 Published by Elsevier Science B.V. Allrights reserved.

* Corresponding author.

0004-3702/99/5 — see front matter1999 Published by Elsevier Science B.V. All rights reserved
PIl: S0004-3702(99)00052-1

20 /26

The “Between” in “Between MDPs and semi-MDPs”

Time ——

MDP //\/\/ IState
SMDP /\/\{

Options »/\ /\,
over MDP 5,

Semi-Markov Decision Processes
In the previous slide

1. Evolution of the process over the open circles: SMDP
level (RL terminology) or the embedded Markov
decision process (OR terminology)

2. Evolution of the process with open circles removed: flat
level (RL terminology), also called natural process (OR
terminology)

Trajectories in an SMDP
Te{T x8 x A}

(So, Ao, To, S1, A1, T, . . .)

We now have a distribution of transition times between two
decisions.

N
N

™)

Options framework

A Markov option w is a triple:

(ZyCS |, mp: SxA—=[0,1], Bw:S8—10,1])
~—— ~~

initiation set internal policy termination function

and we also define a policy over options p: S X W — [0, 1].

Example
Robot navigation: if there is no obstacle in front (Z,,), go
forward (m,) until you get too close to another object (Su)

Option models

Given a set of options and an MDP, we can define option
models

1. Expected reward b,(s): the expected return during w’s
execution from s

2. Transition model F,(s',s): a distribution over next
states (reflecting the discount factor v and the option
duration) given that w executes from s

» F,, specifies where the agent will end up after the
option/program execution and when termination will
happen

Models are predictions about the future, conditioned on the
option being executed.

Bellman equations for options

At the SMDP level, everything behaves like an MDP over
transformed reward and transition functions/models:

Qu(s,w) = by(s) + ZFw(Sa Sl)vu(sl)
=S]) Quls,w)

Optimality Equations:

v*(s) = max(+ZF (s,58")))

Usual DP methods for MDPs directly apply ! Same for Dyna,

or TD.

TD at the SMDP level

Let N; now be a random variable for the duration of an option
started at time ¢:

N —
GE - Ri4+~Rip1+ ... +~4M 1Rt+Nt—1 +7NtQ(5t+Nta Wirn,)

Key idea
It’s just like using the n-steps return but where n is a random
variable rather than being fixed.

SMDP TD Prediction (for option values)

Q4N (S, We) = Qi n,—1(Se, W) + (GiNt) — Qt4+N,—1(St, Wt))

Question : how do you get SMDP Q-learning 7 Answer: just

take a max,, in the GgNt) update target.

26 /26

