
Temporal Abstraction in Reinforcement
Learning

Pierre-Luc Bacon and Doina Precup

February 17, 2017



Multi-steps Boostrapping

1 / 26



Multi-steps Boostrapping

“ [...] they free you from the tyranny of the time step.” —

In S&B 2017, chapter 7

2 / 26



Multi-steps Boostrapping: key idea

The n-step return estimator is defined as:

G
(n)
t = Rt + γRt+1 + . . .+ γn−1Rt+n−1 + γnVt+n−1(St+n)

we then use it as an update target for TD:

Vt+n(St) = Vt+n−1 + α
(
G

(n)
t − Vt+n−1(St)

)

3 / 26



Forward view

The n-step return estimator depends on future rewards, despite
being defined at time t. How do we deal with that ?

1. Wait (batch updating)

2. Use eligibility traces (we’ll see this in a few weeks)

3. Use n-steps models

4 / 26



Model-based RL: recap

5 / 26



Planning: indirect RL

Key idea

We learn models from data, and plug them back into our
Bellman equations.

Remember: with the true rπ and Pπ, we have:

v = rπ + γPπv

Let b be an approximation of rπ and F the model for Pπ:

v = b+ γFv

We can then solve for v with :

1. DP methods

2. Sample-based TD methods (Dyna belongs here)

6 / 26



Dyna

7 / 26



Sutton 1995: n-steps models

As appeared in: Proceedings of the 12th Int. Conf. on Machine Learning, 531{539, Morgan Kaufmann, 1995.

TD Models: Modeling the World at a Mixture of Time Scales

Richard S. Sutton

Stow Research

sutton@gte.com

Abstract

Temporal-di�erence (TD) learning can be

used not just to predict rewards, as is com-

monly done in reinforcement learning, but

also to predict states, i.e., to learn a model

of the world's dynamics. We present the-

ory and algorithms for intermixing TD mod-

els of the world at di�erent levels of tem-

poral abstraction within a single structure.

Such multi-scale TD models can be used in

model-based reinforcement-learning architec-

tures and dynamic programming methods in

place of conventional Markov models. This

enables planning at higher and varied levels

of abstraction, and, as such, may prove use-

ful in formulating methods for hierarchical or

multi-level planning and reinforcement learn-

ing. In this paper we treat only the predic-

tion problem|that of learning a model and

value function for the case of �xed agent be-

havior. Within this context, we establish the

theoretical foundations of multi-scale mod-

els and derive TD algorithms for learning

them. Two small computational experiments

are presented to test and illustrate the theory.

This work is an extension and generalization

of the work of Singh (1992), Dayan (1993),

and Sutton & Pinette (1985).

1 Multi-Scale Planning and Modeling

Model-based reinforcement learning o�ers a poten-

tially elegant solution to the problem of integrat-

ing planning into a real-time learning and decision-

making agent (Sutton, 1990; Barto et al., 1995; Peng

& Williams, 1993, Moore & Atkeson, 1994; Dean et

al., in prep). However, most current reinforcement-

learning systems assume a single, �xed time step: ac-

tions take one step to complete, and their immediate

consequences become available after one step. This

makes it di�cult to learn and plan at di�erent time

scales. For example, commuting to work involves plan-

ning at a high level about which route to drive (or

whether to take the train) and at a low level about how

to steer, when to brake, etc. Planning is necessary at

both levels in order to optimize precise low-level move-

ments without becoming lost in a sea of detail when

making decisions at a high level. Moreover, these lev-

els cannot be kept totally distinct and separate. They

must interrelate at least in the sense that the actions

and plans at a high levels must be turned into actual,

moment-by-moment decisions at the lowest level.

The need for hierarchical and abstract planning is a

fundamental problem in AI whether or not one uses

the reinforcement-learning framework (e.g., Fikes et

al., 1972; Sacerdoti, 1977; Kuipers, 1979; Laird et

al., 1986; Korf, 1985; Minton, 1988; Watkins, 1989;

Drescher, 1991; Ring, 1991; Wixson, 1991; Schmidhu-

ber, 1991; Tenenberg et al., 1992; Kaelbling, 1993; Lin,

1993; Dayan & Hinton, 1993; Dejong, 1994; Chrisman,

1994; Hansen, 1994; Dean & Lin, in prep). We do not

propose to fully solve it in this paper. Rather, we de-

velop an approach to multiple-time-scale modeling of

the world that may eventually be useful in such a so-

lution. Our approach is to extend temporal-di�erence

(TD) methods, which are commonly used in reinforce-

ment learning systems to learn value functions, such

that they can be used to learn world models. When

TD methods are used, the predictions of the models

can naturally extend beyond a single time step. As we

will show, they can even make predictions that are not

speci�c to a single time scale, but intermix many such

scales, with no loss of performance when the models

are used. This approach is an extension of the ideas

of Singh (1992), Dayan (1993), and Sutton & Pinette

(1985).

Most prior work on multi-scale modeling has focused

on state abstraction: Which sets of states can be

treated as a group? What variables can be ignored?

What is a good form of generalization between states?

In this paper we instead focus exclusively on the rela-

tively ignored temporal aspects of abstraction. In fact,

we will assume each state is recognized and treated as

8 / 26



Bellman equations for 2-steps models
Let’s expand v once:

v = rπ + γPπv

= rπ + γPπ(rπ + γPπv)

= rπ + γPπrπ + γ2P 2
πv

Define the 2-step reward model as:

b(2)=̇rπ + γPπrπ

and the 2-step transition model:

F (2)=̇γ2P 2
π

The Bellman equation can then also be written as:

v = b(2) + F (2)v

(The gamma term is folded in F . A matter of taste...)
9 / 26



n-steps models

b(n)=̇

n−1∑

t=0

(γPπ)trπ F (n)=̇(γPπ)n

And once again, the Bellman equations still hold:

v = b(n) + F (n)v

Question : what happens as n→∞ ?

10 / 26



Fun fact: model composition

Homogeneous coordinates

Computer graphics, vision, animation people: this is a familiar
idea.




px
py
pz
1


 =




u11 u12 u13 tx
u21 u2 u23 ty
u31 u32 u33 tz
0 0 0 1







x
y
z
1




where the uij are elements of a rotation matrix and [tx, ty, tz] is
a translation vector.

11 / 26



Bellman equations in homogeneous form

[
v
1

]
=

[
Pπ rπ
0 1

] [
v
1

]
=

[
Pπv + rπ

1

]

where Pπ is a block matrix of size n× n (n being the number of
states) and rπ is a column vector of size n.

12 / 26



Composing models

M=̇

[
γPπ rπ

0 1

]

so that:

v = Mv

A 2-steps models is then:

M (2)=̇M2 =

[
γ2P 2

π γPπrπ + rπ
0 1

]

and generally:

M (n)=̇Mn

and :

v = M (n)v

13 / 26



Digression: RNN

With M defined as usual:

f(vk; (rπ, γPπ))=̇Mv

You can now think of the iterates of value iteration as the linear
dynamical system:

vk+1 = f(vk; (rπ, Pπ))

f is a recurrent neural net ! Your “hidden state” is vk. The
fixed-point is computed by an “infinitely deep” neural net.

vπ = f

(
f
(
. . . f

(
v0; (rπ, Pπ)

)
; (rπ, Pπ)

)
; (rπ, Pπ)

)

Let’s T.grad !

14 / 26



Bengio & al. (1994)

We all want to work with long-term dependencies !
15 / 26



Temporal abstraction

Higher level steps

Choosing the type of coffee maker, type of coffee beans

Medium level steps

Grind the beans, measure the right quantity of water, boil the
water

Lower level steps

Wrist and arm movements while adding coffee to the filter, ...

16 / 26



Temporal abstraction in AI

A cornerstone of AI planning since the 1970’s:

• Fikes et al. (1972), Newell (1972, Kuipers (1979), Korf
(1985), Laird (1986), Iba (1989), Drescher (1991) etc.

It has been shown to :

• Generate shorter plans

• Reduce the complexity of choosing actions

• Provide robustness against model misspecification

• Improve exploration by taking shortcuts in the environment

17 / 26



Frameworks for temporal abstraction in RL: MAXQ

Journal of Arti�cial Intelligence Research 13 (2000) 227-303 Submitted 11/99; published 11/00

Hierarchical Reinforcement Learning with the MAXQ Value

Function Decomposition

Thomas G. Dietterich tgd@cs.orst.edu

Department of Computer Science, Oregon State University

Corvallis, OR 97331

Abstract

This paper presents a new approach to hierarchical reinforcement learning based on de-
composing the target Markov decision process (MDP) into a hierarchy of smaller MDPs
and decomposing the value function of the target MDP into an additive combination of the
value functions of the smaller MDPs. The decomposition, known as the MAXQ decom-
position, has both a procedural semantics|as a subroutine hierarchy|and a declarative
semantics|as a representation of the value function of a hierarchical policy. MAXQ uni�es
and extends previous work on hierarchical reinforcement learning by Singh, Kaelbling, and
Dayan and Hinton. It is based on the assumption that the programmer can identify useful
subgoals and de�ne subtasks that achieve these subgoals. By de�ning such subgoals, the
programmer constrains the set of policies that need to be considered during reinforcement
learning. The MAXQ value function decomposition can represent the value function of any
policy that is consistent with the given hierarchy. The decomposition also creates oppor-
tunities to exploit state abstractions, so that individual MDPs within the hierarchy can
ignore large parts of the state space. This is important for the practical application of the
method. This paper de�nes the MAXQ hierarchy, proves formal results on its representa-
tional power, and establishes �ve conditions for the safe use of state abstractions. The paper
presents an online model-free learning algorithm, MAXQ-Q, and proves that it converges
with probability 1 to a kind of locally-optimal policy known as a recursively optimal policy,
even in the presence of the �ve kinds of state abstraction. The paper evaluates the MAXQ
representation and MAXQ-Q through a series of experiments in three domains and shows
experimentally that MAXQ-Q (with state abstractions) converges to a recursively optimal
policy much faster than 
at Q learning. The fact that MAXQ learns a representation of
the value function has an important bene�t: it makes it possible to compute and execute
an improved, non-hierarchical policy via a procedure similar to the policy improvement
step of policy iteration. The paper demonstrates the e�ectiveness of this non-hierarchical
execution experimentally. Finally, the paper concludes with a comparison to related work
and a discussion of the design tradeo�s in hierarchical reinforcement learning.

c
2000 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

18 / 26



Frameworks in RL: HAM

Reinforcement Learning with Hierarchies of Machines

Ron Parr and Stuart Russell
Computer Science Division, UC Berkeley, CA 94720�

parr,russell � @cs.berkeley.edu

Abstract

We present a new approach to reinforcement learning in which the policies considered by the
learning process are constrained by hierarchies of partially specified machines. This allows for the
use of prior knowledge to reduce the search space and provides a framework in which knowledge
can be transferred across problems and in which component solutions can be recombined to solve
larger and more complicated problems. Our approach can be seen as providing a link between
reinforcement learning and “behavior-based” or “teleo-reactive” approaches to control. We present
provably convergent algorithms for problem-solving and learning with hierarchical machines and
demonstrate their effectiveness on a problem with several thousand states.

Category: reinforcement learning. Preference: plenary.

1 Introduction

Optimal decision making in virtually all spheres of human activity is rendered intractable by the complexity of the task
environment. Generally speaking, the only way around intractability has been to provide a hierarchical organization
for complex activities. Although it can yield suboptimal policies, top-down hierarchical control often reduces the
complexity of decision making from exponential to linear in the size of the problem. For example, hierarchical task
network (HTN) planners can generate solutions containing tens of thousands of steps [4], whereas “flat” planners can
manage only tens of steps.

HTN planners are successful because they use a plan library that describes the decomposition of high-level activities
into lower-level activities. This paper describes an approach to learning and decision making in uncertain environments
(Markov decision processes) that uses a roughly analogous form of prior knowledge. We use hierarchical abstract
machines (HAMs), which impose constraints on the policies considered by our learning algorithms. HAMs consist
of nondeterministic finite state machines whose transitions may invoke lower-level machines. Nondeterminism is
represented by choice states where the optimal action is yet to be decided or learned. The language allows a variety
of prior constraints to be expressed, ranging from no constraint all the way to a fully specified solution. One useful
intermediate point is the specification of just the general organization of behavior into a layered hierarchy, leaving it
up to the learning algorithm to discover exactly which lower-level activities should be invoked by higher levels at each
point.

The paper begins with a brief review of Markov decision processes (MDPs) and a description of hierarchical abstract

19 / 26



Frameworks in RL: Options

Artificial Intelligence 112 (1999) 181–211

Between MDPs and semi-MDPs:
A framework for temporal abstraction

in reinforcement learning

Richard S. Suttona,∗, Doina Precupb, Satinder Singha
a AT&T Labs.-Research, 180 Park Avenue, Florham Park, NJ 07932, USA

b Computer Science Department, University of Massachusetts, Amherst, MA 01003, USA

Received 1 December 1998

Abstract

Learning, planning, and representing knowledge at multiple levels of temporal abstraction are key,
longstanding challenges for AI. In this paper we consider how these challenges can be addressed
within the mathematical framework of reinforcement learning and Markov decision processes
(MDPs). We extend the usual notion of action in this framework to includeoptions—closed-loop
policies for taking action over a period of time. Examples of options include picking up an object,
going to lunch, and traveling to a distant city, as well as primitive actions such as muscle twitches
and joint torques. Overall, we show that options enable temporally abstract knowledge and action
to be included in the reinforcement learning framework in a natural and general way. In particular,
we show that options may be used interchangeably with primitive actions in planning methods such
as dynamic programming and in learning methods such as Q-learning. Formally, a set of options
defined over an MDP constitutes a semi-Markov decision process (SMDP), and the theory of SMDPs
provides the foundation for the theory of options. However, the most interesting issues concern the
interplay between the underlying MDP and the SMDP and are thus beyond SMDP theory. We present
results for three such cases: (1) we show that the results of planning with options can be used during
execution to interrupt options and thereby perform even better than planned, (2) we introduce new
intra-option methods that are able to learn about an option from fragments of its execution, and
(3) we propose a notion of subgoal that can be used to improve the options themselves. All of these
results have precursors in the existing literature; the contribution of this paper is to establish them
in a simpler and more general setting with fewer changes to the existing reinforcement learning
framework. In particular, we show that these results can be obtained without committing to (or ruling
out) any particular approach to state abstraction, hierarchy, function approximation, or the macro-
utility problem. 1999 Published by Elsevier Science B.V. All rights reserved.

∗ Corresponding author.

0004-3702/99/$ – see front matter 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S0004-3702(99)00052-1

20 / 26



The “Between” in “Between MDPs and semi-MDPs”

SMDP

Time

MDP
State

Options 

over MDP

Fig. 1. The state trajectory of an MDP is made up of small, discrete-time transitions,
whereas that of an SMDP comprises larger, continuous-time transitions. Options
enable an MDP trajectory to be analyzed in either way.

tion 4 considers the problem of effectively combining a given set of options
into a single overall policy. For example, a robot may have pre-designed con-
trollers for servoing joints to positions, picking up objects, and visual search,
but still face a difficult problem of how to coordinate and switch between
these behaviors [17,22,38,48,50,65–67]. Sections 5 and 6 concern intra-option
learning—looking inside options to learn simultaneously about all options con-
sistent with each fragment of experience. Finally, in Section 7 we illustrate a
notion of subgoal that can be used to improve existing options and learn new
ones.

1 The Reinforcement Learning (MDP) Framework

In this section we briefly review the standard reinforcement learning frame-
work of discrete-time, finite Markov decision processes , or MDPs , which forms
the basis for our extension to temporally extended courses of action. In this
framework, a learning agent interacts with an environment at some discrete,
lowest-level time scale, t = 0, 1, 2, . . . On each time step, t, the agent perceives
the state of the environment, st ∈ S, and on that basis chooses a primitive
action, at ∈ Ast . In response to each action, at, the environment produces one
step later a numerical reward, rt+1, and a next state, st+1. It is convenient to
suppress the differences in available actions across states whenever possible;
we let A =

�
s∈S As denote the union of the action sets. If S and A, are fi-

nite, then the environment’s transition dynamics can be modeled by one-step
state-transition probabilities,

pa
ss� = Pr{st+1 = s� | st = s, at = a},

4

21 / 26



Semi-Markov Decision Processes

In the previous slide

1. Evolution of the process over the open circles: SMDP
level (RL terminology) or the embedded Markov
decision process (OR terminology)

2. Evolution of the process with open circles removed: flat
level (RL terminology), also called natural process (OR
terminology)

Trajectories in an SMDP

τ ∈ {T × S ×A}∞

(S0, A0, T0, S1, A1, T1, . . .)

We now have a distribution of transition times between two
decisions.

22 / 26



Options framework

A Markov option ω is a triple:

( Iw ⊆ S︸ ︷︷ ︸
initiation set

, πw : S ×A → [0, 1]︸ ︷︷ ︸
internal policy

, βw : S → [0, 1]︸ ︷︷ ︸
termination function

)

and we also define a policy over options µ : S ×W → [0, 1].

Example

Robot navigation: if there is no obstacle in front (Iw), go
forward (πw) until you get too close to another object (βw)

23 / 26



Option models

Given a set of options and an MDP, we can define option
models

1. Expected reward bw(s): the expected return during w’s
execution from s

2. Transition model Fw(s′, s): a distribution over next
states (reflecting the discount factor γ and the option
duration) given that w executes from s

I Fw specifies where the agent will end up after the
option/program execution and when termination will
happen

Models are predictions about the future, conditioned on the
option being executed.

24 / 26



Bellman equations for options
At the SMDP level, everything behaves like an MDP over
transformed reward and transition functions/models:

Qµ(s, w) = bw(s) +
∑

s′
Fw(s, s′)vµ(s′)

vµ(s) =
∑

w

µ (w | s)Qµ(s, w)

Optimality Equations:

v∗(s) = max
w

(
bw(s) +

∑

s′
Fw(s, s′)v∗(s′)

)

Usual DP methods for MDPs directly apply ! Same for Dyna,
or TD.

25 / 26



TD at the SMDP level
Let Nt now be a random variable for the duration of an option
started at time t:

G
(Nt)
t = Rt + γRt+1 + . . .+ γNt−1Rt+Nt−1 + γNtQ(St+Nt ,Wt+Nt)

Key idea

It’s just like using the n-steps return but where n is a random
variable rather than being fixed.

SMDP TD Prediction (for option values)

Qt+Nt(St,Wt) = Qt+Nt−1(St,Wt) + α
(
G

(Nt)
t −Qt+Nt−1(St,Wt)

)

Question : how do you get SMDP Q-learning ? Answer: just

take a maxw in the G
(Nt)
t update target.

26 / 26


