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Throughout this thesis, I develop the idea that the problem of learning good

temporal abstractions in reinforcement learning is intimately tied to a kind of

representation learning problem that I call temporal representation learning. This

choice of terminology is meant to highlight the fact that time is an indisso-

ciable aspect of learning systems experiencing their environment. Reconcil-

ing the notion of time with learning leads us to solution methods that better

fit into a continual learning paradigm (Ring, 1991). Based on this principle,

I propose the option-critic architecture for constructing temporal abstractions

end-to-end, in the options framework (Sutton et al., 1999a). Furthermore, ac-

knowledging the importance of time renders inevitable the fact that learning

should be as efficient as possible when facing limited resources. I express this

idea in the bounded rationality framework of Simon (1957) and extend the

option-critic architecture accordingly to learn better options. I also establish a

connection between the bounded rationality perspective on options discovery

and the problem of finding good matrix preconditioners in numerical linear

algebra. I show this point formally by exposing a common mathematical struc-

ture between multi-step RL methods and options using matrix splitting theory

(Varga, 1962).
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Dans cette thèse, je propose l’idée que le problème d’apprentissage de bonnes

abstractions temporelles est intimement lié à un problème d’apprentissage de

représentation que j’appelle apprentissage temporel de représentation. Ce choix de

terminologie vise à rappeler le fait que le temps est un aspect indissociable d’un

système d’apprentissage plongé dans son expérience d’apprentissage avec son

environnement. La réconciliation de la notion du temps avec celle de l’ap-

prentissage mène à des solutions qui s’intègrent mieux dans un paradigme

d’apprentissage continuel (Ring, 1991). Basé sur ce principe, je propose l’ar-

chitecture option-critic pour construire des abstractions temporelles bout-en-

bout (end-to-end) dans le cadre théorique des options (Sutton et al., 1999a).

De plus, reconnaître l’importance du temps rend inévitable le fait que l’ap-

prentissage doit être le plus efficace possible lorsque soumis à des limites en

resources. Je développe cette idée dans le cadre de la notion de rationalité

limitée (Simon, 1957) et montre comment elle peut être intégrée dans l’archi-

tecture option-critic pour apprendre de meilleures options. Je montre également

qu’apprendre des options du point de vue de la rationalité limitée est lié au

problème de construction de bons préconditionneurs de matrices en algèbre

numérique linéaire. Je démontre cette idée formellement en établissant que les

méthodes à pas multiples (multi-step) en apprentissage par renforcement ainsi

que les options ont en commun une structure mathématique dont les origines

proviennent du concept de matrix splitting de Varga (1962).
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Contribution to Original Knowledge

This thesis contributes to the understanding of the notion of temporal abstrac-

tion in reinforcement learning. More specifically, it addresses the problem of

options discovery in reinforcement learning by proposing:

1. An approach for learning options in an end-to-end fashion using policy

gradient methods, including:

• a novel augmented state space perspective on Markov options

• a set of mathematical results showing the exact form of the gradients

required to implement this system.

• a learning architecture where options are jointly learned along with

their value functions: the option-critic architecture.

2. An interpretation of the role played by options in the bounded rationality

framework, leading to:

• a practical regularization strategy to learn longer options within the

option-critic architecture based on the idea of deliberation cost

• a family of algorithms that can introspect about their computational

effort at a potentially different time scale than their environment

3. A unified framework for multi-step reinforcement learning and options

based on the concept of matrix-splitting providing:

• a new interpretation of options discovery in connection with matrix

preconditioning

• a new characterization of the polling execution model for options

and its relation to the call-and-return model
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Contribution of Authors

• Chapter 1 on the history of temporal abstraction and the constructivist

influence in the options framework is based on Bacon and Precup (2018).

• Chapter 2 and chapter 3 are based on new material written specifically

for this thesis.

• Chapter 4 originates from two workshop papers: (Bacon and Precup,

2016, 2017). The material has been completely re-written in this thesis to

provide a more unified presentation.

• Chapter 5 is based on a manuscript in preparation (Bacon et al., 2018).

It evolved from two workshop publications (Bacon and Precup, 2015a,b)

that were then extended into conference papers: Bacon et al. (2017); Harb

et al. (2018). My co-author Jean Harb wrote the code for the DQN and

A2OC variants of option-critic and conducted the experiments in the

Atari domain. More insights and results regarding the DQN variant can

be found in Jean’s master’s thesis (Harb, 2016).
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Chapter 1

Introduction

Intelligent systems have the ability to adapt and generalize quickly in the pres-

ence of change and uncertainty in their environments. Fundamentally, the suc-

cess of their adaptation and learning strategies hinges on the quality of their

representations. Simon (1969) in fact argued that : “[...] solving a problem

simply means representing it so as to make the solution transparent.”

Building good representations is a longstanding challenge of artificial intelli-

gence. In this thesis, we examine this problem in the context of reinforcement

learning, the learning paradigm in which an agent interacts with its environ-

ment by making observations, choosing actions, and receiving feedback in the

form of a numerical reward. The goal of the agent is to maximize an expected

cumulative measure over the rewards. Since the environment might be enor-

mous (as in the case of the game of Go, for example), and the reward may be

sparse, a good representation needs to generalize well over observations (or

perceptions) as well as over multiple timescales.

Over time, notable progress has been made in the realm of perceptual gener-

alization. For example, the celebrated TD Gammon (Tesauro, 1995) program

achieved unprecedented performance against the human backgammon cham-

pion by using a combination of reinforcement learning techniques and a two-

layer neural network. Recent advances in deep neural networks have led to

even more impressive demonstrations of this ability in tasks such as daily-

double wagering (Tesauro et al., 2013), Atari game playing (Mnih et al., 2015),

and playing the game of Go (Silver et al., 2016). In all these cases, the system is

given the responsibility of building its own representation by leveraging data.

1
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The twin problem of building good generalizations of actions over multi-

ple timescales, otherwise known as temporal abstraction, has also received

a steady influx of attention across different sub-fields of artificial intelligence

(Minsky, 1961; Fikes et al., 1972; Kuipers, 1979; Korf, 1983; Iba, 1989; Drescher,

1991; Dayan and Hinton, 1992; Kaelbling, 1993; Dean and Lin, 1995; Sutton

et al., 1999a). Even in the early stages of AI, Minsky (1961) recognized how

“[...] we rarely solve a tricky problem by a steady climb toward success.” and

that a hierarchical approach to problem-solving is more likely to subtend our

intellectual abilities. This organization of knowledge gives a system the abil-

ity to choose the right level of abstraction for a problem. As a consequence,

progress made at one level may appear as a stroke of “insight” (Minsky, 1961)

from the level above.

Systems with insight – the capacity to gain an accurate and deep intuitive un-

derstanding of a problem – (Oxford English Dictionary) have the flexibility to

reason and learn beyond the confines of the knowledge provided to them a

priori; these systems are “habile” (Nilsson, 1995). In contrast, “performance

systems” (Nilsson, 1995) are designed for specific problems. While they may

achieve super-human performance, they lack general autonomy and compe-

tency.

We have been pursuing the goal of temporal abstraction for building habile

systems, which means that a learner should not just represent its knowledge

at given timescales, but also automatically figure out which timescales are

interesting for both prediction and control. The problem of knowledge repre-

sentation at multiple scales can be handled in reinforcement learning systems

through the framework of options (Sutton et al., 1999a). Generally speaking,

options encapsulate behaviors that can be initiated and terminated, akin to

subroutines in a programming language. Planning with given options, as well

as learning options that achieve pre-specified subgoals, is well understood.

However, the problem of “option discovery" – figuring out a good set of op-

tions fully automatically – has proven very hard to handle so far. A possible

reason behind this impasse is the attention put on allowing program designers

to specify what is interesting problem structure. The resulting programs are

akin to Nilsson’s “performance systems”: they do well on certain tasks, but

are often too brittle to deploy widely or scale up.
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In chapter 5, we describe the option-critic architecture, which is our attempt to

make the step towards more habile systems. The idea that a learning system

should be in charge of finding the options that are suitable for itself, given its

environment, is a core principle of the approach put forward in this thesis. We

wish to allow the agent to continually learn and adapt its representation at

all abstraction levels and based solely on the data stream it observes, without

requiring biasing information from a human designer. Our approach builds

on the actor-critic architecture (Sutton, 1984), which provides an incremental,

online, and model-free approach to learning from a continual stream of experi-

ence. Unlike other previous or existing methods, the option-critic architecture

requires no subgoals, pseudo-reward, decomposition, or demonstrations, and

constructs options fully autonomously while embedded in a control task that

has to be solved at the same time

While the option-critic architecture offers new optimization tools, it does not

provide a full answer as to what good options ought to be. We argue that

the main benefit of learning options – thereby representations – should be to

learn and reason fast in the face of uncertain and novel experience. In making

efficiency the mainstay of representation learning, the need for considering the

reality of time and its fleeting nature (Sutton, 2015a) becomes unavoidable. The

arguments put forward in our temporal approach to representation learning

resemble in many ways those of the dynamical approaches to cognition (van

Gelder and Port, 1995). In this framework, cognition is seen as a dynamical

system which unfolds through time and in the environment. Because of this

unfolding, cognitive processes must make an efficient use of their experience

given their limited capabilities because:

“[...] they cannot take too little time or too much time. The system

must spend an appropriate amount of time in the vicinity of any

given state. The timing of any particular operation must respect the

rate at which other cognitive, bodily, and environmental processes

are taking place.” (van Gelder and Port, 1995, p. 19)
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A natural framework to formalize this notion of efficiency under limited re-

sources is with bounded rationality (Simon, 1957). When departing from per-

fect rationality, boundedly rational systems are naturally pressured into mak-

ing use of the regularities of their environment. When such systems are learn-

ing representations, only the essential elements can be captured because the

resources – time, energy, computation, favorable opportunities – are scarce.

In section 5.2.1, we formalize this intuition through what we call a deliberation

cost, which is a regularizer that entices the construction of longer temporally ex-

tended actions through the option-critic architecture. Furthermore, we develop

a mathematical theory in chapter 4 that puts multi-step reinforcement learning

methods and temporal abstraction on the same substrate: that of matrix split-

ting methods (Varga, 1962). This allows us to discuss about the properties and

design tradeoffs of good representations using a vocabulary borrowed from

matrix preconditioning theory (Golub and Van Loan, 1996; Watkins, 2004). Ma-

trix preconditioning techniques, like representation learning methods, also aim

to find a transformation of a problem into one that is easier to solve. In the fol-

lowing chapter, we present a brief overview of reinforcement learning and the

development of the notion of temporal abstraction in AI. This material will be

supplemented with a more technical presentation in chapter 2. In describing

the options framework, we will take a detour along the way to appreciate its

roots in constructivism (Piaget, 1937; Drescher, 1991). This perspective will be

useful to understand the properties sought in our system.

1.1 Reinforcement Learning

Reinforcement Learning (RL) refers to learning from the experience generated

by an agent interacting with its environment. Conceptually, the field has been

inspired by the work on trial-and-error learning from psychology, but methods

were formalized and analyzed using the theory of Markov Decision Processes

(MDPs) (Bellman, 1954). An MDP consists of a set of states (modelling the

agent’s perceptions) and a set of actions. For each state-action pair, there is a

well-defined transition probability distribution from which the next state will

be drawn. The reward function specifies, for each state-action pair, an immediate

numerical reward that will be received by the agent. While the transition
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and reward functions are assumed to exist, the agent does not have access to

them. Instead, it interacts with the environment by observing states, choosing

actions, and observing the resulting rewards and next states. A sequence of

states, actions, and rewards generated in this manner is called a trajectory.

The agent will typically seek a way of choosing actions, conditioned on states,

that is rewarding in the long run. Such a stochastic decision procedure is

called a policy (denoted by π). Rather than simply maximizing the total re-

ward, which may not be bounded in general, the agent usually attempts to

maximize discounted returns. The discount factor γ can be conceptualized as an

inflation rate that deprecates rewards at every time step. In the policy evalua-

tion problem, the goal is to compute the expected discounted sum of rewards

for a given, fixed policy over the distribution of possible trajectories. This infor-

mation is summarized in a so-called value function. In the control problem, the

goal is to find a policy that maximizes the expected return.

A natural approach to these problems for agents that are continually acting

and learning is Temporal Difference (TD) learning, introduced by Sutton (1984,

1988) in the context of policy evaluation, and later adapted for control through

the Q-learning (Watkins, 1989) and Sarsa (Rummery and Niranjan, 1994) al-

gorithms. For the policy evaluation case, the core idea is that, after learning

has completed, the value of a state should be equal, in expectation, to the

reward plus the discounted value of the next state. The temporal difference

error quantifies how different the estimated value of a state is at the current

time step, compared to one time step later (when a new sample transition and

reward have been observed). The algorithm uses this error to train an approxi-

mation of the value function associated with that policy. In the case of control,

this idea is supplemented with a simple strategy for changing the policy over

time: actions that lead to better-than-expected outcomes should be taken more

often (i.e. reinforced).

1.2 Actions with Variable Duration

After having established its modern foundations at the end of the 1980s, a

number of proposals were made to extend the scope of reinforcement learn-

ing methods from actions of fixed duration to temporally extended actions
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(Watkins, 1989; Singh, 1992a; Dayan and Hinton, 1992; Kaelbling, 1993; Thrun

and Schwartz, 1995; Sutton, 1995), culminating at the end of the nineties (Parr

and Russell, 1998; Hauskrecht et al., 1998; Dietterich, 1998; Sutton et al., 1999a)

with several formulations based on Semi-Markov Decision Processes (SMDP)

(Howard, 1963).

The MDP model makes the assumption that the environment transitions to a

new state in a single time step (or, equivalently, in a constant amount of time),

while in an SMDPs, the transition duration is a random variable. This provides

a natural fit for representing temporally abstract actions, which can persist over

time. More precisely, in an SMDP, the choice of action at a given state induces a

joint probability distribution over the next state and the duration of the transi-

tion. Hence, a trajectory in an SMDP includes, in addition to states, actions and

rewards, the duration of each transition. The name “semi-Markov” stems from

the fact that the process is only assumed to be Markov from decision point to

decision point, which conveniently allows for existing dynamic programming

results to apply at the level of decisions (or action choices). However, the evo-

lution of the system between two decisions may not even be Markov, and it

is also allowed to unfold over continuous time. In fact, when the transition

duration is exponentially distributed, this leads to a decision process called

continuous time Markov Decision Process (CTMDP) (Puterman, 1994).

1.3 Seeing through the Black Box with Options

Despite adopting the same SMDP formalism, the options framework (Sutton

et al., 1999a) differs from its contemporaries (Parr and Russell, 1998; Diet-

terich, 1998) in its emphasis on exposing and leveraging both the structure

within and over temporally extended actions. The evolution of the process be-

tween two decision points is no longer a black-box and can be both controlled

and observed. The ability to seamlessly learn and plan at different levels of

abstraction stems from the assumption that there exists a base MDP that is

overlaid with temporally extended actions called options: the combination is

shown to induce an SMDP. With the expression “between MDPs and semi-

MDPs” in the title of their paper, the authors of (Sutton et al., 1999a) tried to

convey the idea that options provide a lens of variable resolution.
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An option is a combination of three components: an initiation set, a policy

(sometimes called internal), and a termination condition. The initiation set

for an option is a subset of the states in which the given option could be

chosen. In the most common execution model – call-and-return – the policy of

an option acts until the probabilistic termination condition associated with it

is met. More precisely, upon entering the next state, the system has to toss a

biased coin, whose outcome dictates continuation or termination of the current

option. Once an option has terminated, a policy over options µ chooses a new

option, and the process is repeated.

1.3.1 Constructivist Influence

To get some perspective on what the options framework is and what it ought

to be 1, it is useful to follow its lineage into the Schema mechanism of (Drescher,

1991). Inspired by Piaget’s constructivism (Piaget, 1937), Drescher (1991) puts

forward the idea that all knowledge acquired by an agent is represented in

terms of its own experience with the sensation of its actions in the environ-

ment. A schema, whose semantics has much in common with options, is a

symbolic structure that describes the result of an action given a context. The

role of a schema goes beyond the simple specification of actions and can be

used to express general knowledge about the environment. For example, a

robot might choose to represent the fact that the charger is in front of it based

on its own prediction of what would happen if it were to dock (Sutton, 2012). It

might also choose to represent the presence of humans based on the predicted

sensory inputs that would typically follow the playback of its “bebeep boop”

sounds and dance sequence in the morning.

This idea of building representations of the world grounded in predictions

about the outcome of temporally abstract actions has informed the develop-

ment of the options framework. Building on an earlier line of work (Sutton,

1995; Precup and Sutton, 1997; Precup et al., 1998), Sutton et al. (1999a) showed

that predictions about the expected return and future state and duration upon

termination of an option could be used for planning. Like simple actions,

options have associated reward and transition models, which can be used in a

set of Bellman equations at the SMDP level, whose solution can be found by

1A personal interpretation from my conversations with Rich Sutton and Doina Precup
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dynamic programming methods. Options and their models then play a rep-

resentational role in the sense of Drescher (1991): they are agent-centric and

encode meaning over action-conditional predictions.

1.3.2 A Multifaceted Framework

Looking beyond the purely constructivist perspective, thinking about options

in isolation from their models has also been of practical interest. Rather than

choosing actions after reasoning in a predictive representation, options can

interact directly with the environment. This leads to what we call the execution

perspective on options. Here, an option is more procedural in nature and acts

as a data structure for expressing action choices 2. Using computer program

execution as an analogy, an option is akin to a function executed within a

program in a call-and-return fashion: its instructions are read (policy of an

option), moved to the CPU (environment), and upon terminating, the next

function is loaded (initiated) from the call stack along with its arguments.

Complex control flows can be generated in this manner and a generalization

to deeper hierarchies follows naturally.

Fundamentally, it is the need for remembering which option is currently ex-

ecuting that leads to the concept of a stack. The content of the stack is also

where we draw a line between Markov options and semi-Markov options. In the

simplest case, the stack for Markov options is of constant size because it holds

exclusively the identity of the current option: a single integer variable is suf-

ficient for implementation. For example, we can imagine a robot navigation

task for which a good Markov option might be: “if there is no obstacle” (ini-

tiation set), “move forward” (the policy of that option) “until the charger is

reached” (termination condition). However, if we were to also specify that the

robot should stop searching for the charger after some time, the corresponding

option would be semi-Markov. In fact, the need to actively keep track of time

creates a dependence on the history since initiation (unless timing information

is included in the state space). An option is therefore Markov if its behavior

depends only on the current state and not on any measurements of the history

since its initiation. The restriction to Markov options leads to the powerful

idea of intra-option learning (Sutton et al., 1998), which has no analogue in the

2Sutton rejects this view (Sutton, 2009).
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semi-Markov case. The Markov option property, as well as the intra-option

formulation, are central to our approach for learning options.

1.4 The Bottleneck Concept

Learning and planning with options has been well understood since Sutton

et al. (1999a). If the options are pre-specified, dynamic programming or tem-

poral difference learning methods can be used to learn about option values

and models. However, the problem of discovering useful options automati-

cally is still difficult to tackle. The challenge comes on two fronts: defining

what useful or good options mean and designing algorithms for finding those

options.

An important contribution to the discovery problem in the context of classi-

cal macro-actions came from Iba (1989) and his peak-to-peak heuristic, inspired

by the concept of chunking (Mayzner and Gabriel, 1963) from psychology. The

premise of this work is that pairs of peaks in the evaluation function should pro-

vide useful demarcations for where temporally extended actions should start

and end. Based on the same intuition, (Konidaris and Barto, 2009; Niekum

et al., 2012) later framed option discovery as a change-point detection problem

from expert demonstrations.

This idea of peaks is also related to bottleneck states (McGovern and Barto,

2001; Stolle and Precup, 2002), which are states that occur more frequently on

successful trajectories through the environment. Bottleneck states, like peaks,

are intuitively associated with breakthroughs in the solution. Consider a goal-

directed navigation task in an environment containing rooms and doorways.

If the agent is starting in a separate room from the goal, doorways would nec-

essarily be crossed on successful trajectories and should be useful subgoals.

Many graph-theoretic formulations of the bottleneck concept have been pro-

posed over the years. For example, Özgür and Barto (2009) chose the notion of

betweenness centrality (Freeman, 1977) – the relative number of shortest paths

passing through a vertex – as a measure of importance. Alternatively, graph

partitioning ideas have often been used to define options around the bottleneck

states at the boundary of each partition (Dean and Lin, 1995; Menache et al.,
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2002; Özgür et al., 2005; Botvinick et al., 2009; Chaganty et al., 2012; Bouvrie

and Maggioni, 2012; Bacon, 2013; Krishnamurthy et al., 2016; Machado et al.,

2017).

The bottleneck concept can be challenging to turn into practical and scalable

algorithms. One important reason is the need for vast quantities of data (some-

times expert data, which is hard to obtain). Moreover, in the graph-theoretic

formulation, the underlying state connectivity graph of the MDP must be ap-

proximated first, before the search for bottlenecks. While some progress has

been made recently by Machado et al. (2017), the approximation step often

renders the graph perspective incompatible with online implementations and

over continuous spaces.

1.5 Desiderata

In our work on the discovery problem, a liberating decision has been to mo-

mentarily give the word “discovery” a break in order to refocus our attention

on “learning”. After all, as reinforcement learning researchers, learning is

what gets us up in the morning after coffee... Yet, that seemingly innocuous

change from “discovering options” to “learning options” had a significant im-

pact on our understanding of the problem and the kind of properties that our

algorithms should have.

The terminology of “learning options” had also been used in the past, but

mostly in the context of subgoal (Sutton et al., 1999a) or pseudo-reward (Di-

etterich, 1998) methods, which allow leveraging such external information in

order to learn the policies and termination conditions of options, by treating

each option as an MDP on its own. Given that the environment allows for

arbitrary resets, the policy of an option would be initialized within its initia-

tion set and executed until its termination condition was met. This leads to a

process that separates learning the internal information for the options from

learning the policy over options, as well as from learning useful subgoals or

pseudo-reward functions.

Our desire to avoid this kind of “partitioned" learning is led us to embrace

a more integrative and continual perspective. We asked ourselves: wouldn’t
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it be possible to learn at all times, the elements of all options and the policy

over them? This way of thinking also allows us to consider the question of

optimality of a set of options. This issue is especially apparent in the subgoal

and reward settings and pertains to the fact that locally optimal options may

not lead to optimality of the overall system (Minsky, 1961; Watkins, 1989; Di-

etterich, 2000). Thus, we wanted to address this mismatch by learning options

that were aligned with a well-defined objective for the system as a whole.

The end-to-end perspective not only provides this alignment with a given objec-

tive but also puts learning in the hands of the system. We are thereby strength-

ening the meaning of options as internal abstractions belonging exclusively to

an agent, and not to the environment, as latent variables; they play a subjective

role (Tanner et al., 2007; Sutton, 2012). In this sense, the study of options is

intrinsically phenomenological and as once expressed by Stanislaw Ulam (Rota,

1986, p.2):

[..] what you are describing is not an object, but a function, a

role that is inextricably tied to some context. Take away the context,

and the meaning also disappears.

Pushing the responsibility of learning good options to the agent was also a way

to prevent ourselves from biasing towards the kind of options that we thought

the system should have. Specifically, we wanted to explore beyond bottleneck

options and to let them emerge from learning only if deemed useful by the

agent. Araújo and Davids (2011) argues that ascribing behavior externally in

terms of personal features rather than within the agent-environment relation

causes an “organismic asymmetry” and a lost sense of private (Sutton, 2012)

directed purpose within the agent. In order to bring the balance back, a switch

must be made from viewing options as external symbolic objects to one which

emphasizes their functional relationship within a system and its environment.

Options discovery then becomes more a process of “attenuation” and adapta-

tion (Araújo and Davids, 2011) to the key properties of the environment.
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1.6 Objectives and Outline

The main goal of this thesis is to develop a new approach for learning op-

tions, which is online, model-free and capable of handling continuous states

and actions spaces. Furthermore, we want this method to provide us with a

guarantee that the options it finds will help to solve the task at hand.

In order to get there, we first review some technical aspects of Markov Decision

Processes (MDP) in chapter 2, with an emphasis on the notion of discounted

weighting of states which inevitably appears in policy gradient methods (pre-

sented in section 2.1). The proposed approach for learning option, option-critic,

belongs to this class of methods and will later be shown in section 3.3 to also

involve a discounted weighting of state-option pairs. The development of this

notion will then set the stage for the derivation of the policy gradient theorem

in section 2.4 which will be shown in matrix form. A novel view on the policy

gradient equations will also be offered, exploiting their recursive (Bellman-like)

structure and showing that they specify a General Value Function (GVF). This

new approach will ease the derivation of option-critic later in section 5.1.

A second objective of this thesis is to provide an answer as to what options

ought to be. This is because option-critic provides an answer to the how, but

does not answer the what: it simply gives us an optimization framework for

learning parameterized options by gradient ascent on any objective expressed

as a sum of rewards. In section 5.2.1, we put forward the idea that good op-

tions should be those which make learning and planning easier. We propose

a specific regularizer based on a notion of deliberation cost which implements

this idea while promoting longer options. We develop this notion within the

bounded rationality framework of Simon (1957).

A third research objective is to understand precisely how both multi-step meth-

ods and options may contribute to this goal of facilitating learning and plan-

ning. In chapter 4, we show that these two notions can be explained with the

concept of matrix splitting (Varga, 1962) from numerical linear algebra. This

connection then allows us to relate the qualities of good options and repre-

sentations with those of good matrix preconditioners. The inherent tension

between cost of computation and convergence rate in matrix preconditioning

reflects the same tradeoff that bounded agents are also facing.



Chapter 2

Technical Aspects

A Markov Decision Process (MDP) (Bellman, 1954) consists of a set of states S,

a set of actions A, a transition probability function P : S×A → Dist(S) and

a bounded reward function r : S×A → R. For convenience, we develop our

ideas assuming discrete state and action sets unless otherwise noted.

Assumption 1. The reward function is bounded: ∀s ∈ S, a ∈ A : maxs maxa |r(s, a)| =
κ < ∞ for some scalar κ.

The MDP formulation also allows for the reward function to be randomized,

in which case r becomes a distribution over possible rewards. A randomized

reward function can be converted back into an equivalent deterministic form

by simply taking its expectation: a transformation which we use in section 5.2.

A Markovian randomized stationary policy is a probability distribution over

actions conditioned on states, π : S → Dist(A). In discounted problems,

the value function of a policy π (also called return function by Denardo (1967)

or cost-to-go function in Bertsekas (2012)) is defined as the expected sum of

discounted rewards called return:

vπ(s) = E

[
∞

∑
t=0

γtr(St, At)

⏐⏐⏐⏐⏐ S0 = s

]
(2.1)

where γ ∈ [0, 1) is the discount factor. The idea of discounting can be useful in

modeling problems where it may be necessary to express the fact that rewards

accrued far in the future may be worth less than in the immediate time. When

γ = 0 for example, the value of a state is simply the expected immediate

13
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reward under the given policy: vπ(s) = r(s, π(s)) for a deterministic policy,

or vπ(s) = ∑a π (a | s) r(s, a) in the randomized case. Discounting also plays a

practical role of bounding the returns. To see this, assume for simplicity that

the rewards are within [0, Rmax]. In this case, it follows that the return is at

most ∑∞
t=0 γtRmax = Rmax

1−γ since ∑∞
t=0 γt is a geometric series. In an MDP where

the transition matrix has no absorbing state, setting γ = 1 would then lead to

unbounded returns.

While the infinite summation in (2.1) indicates that we are working under

the infinite horizon (Puterman, 1994) case, we can also think of the discounted

setting as a finite horizon problem where the horizon length is distributed ac-

cording to a geometric distribution (Derman, 1970; Puterman, 1994; Shwartz,

2001).

Lemma 2.1. The expected sum of discounted rewards is equal to the following undis-

counted formulation:

vπ(s) = E

[
E

[
T−1

∑
t=0

γtr(St, At)

] ⏐⏐⏐⏐⏐ S0 = s

]
,

where the length of the horizon T is a random variable, drawn from a geometric distri-

bution with parameter γ.

Proof. This proof is adapted from (Puterman, 1994, proposition 5.3.1).

Working under assumption (1) and that the discount factor is strictly less than

1, we can interchange the order of summation in the following expression:

E

[
E

[
T−1

∑
t=0

r(St, At)

] ⏐⏐⏐⏐⏐ S0 = s

]
= E

[
∞

∑
n=0

(1− γ)γn
n

∑
t=0

r(St, At)

⏐⏐⏐⏐⏐ S0 = s

]

= E

[
∞

∑
t=0

r(St, At)
∞

∑
n=t

(1− γ)γn

⏐⏐⏐⏐⏐ S0 = s

]

= E

[
∞

∑
t=0

γtr(St, At)
∞

∑
n=0

(1− γ)γn

⏐⏐⏐⏐⏐ S0 = s

]

= E

[
∞

∑
t=0

γtr(St, At)

⏐⏐⏐⏐⏐ S0 = s

]
= vπ(s) ,
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where we proceeded to the interchange by re-writing the indices so as to main-

tain the ordering 0 ≤ t ≤ n− 1 < ∞. The penultimate step follows from the

fact that the rightmost series is a geometric series converging to 1
1−γ .

2.1 Policy Evaluation Equations

By unrolling the infinite sum of rewards in (2.1), we can obtain a recursive

expression for the value of a state:

vπ(s) = E

[
∞

∑
t=0

γtr(St, At)

⏐⏐⏐⏐⏐ S0 = s

]

= E

[
r(S0, A0) +

∞

∑
t=1

γtr(St, At)

⏐⏐⏐⏐⏐ S0 = s

]

= E

[
r(S0, A0) +

∞

∑
t=0

γt+1r(St+1, At+1)

⏐⏐⏐⏐⏐ S0 = s

]

= E

[
r(S0, A0) + γ

∞

∑
t=0

γtr(St+1, At+1)

⏐⏐⏐⏐⏐ S0 = s

]

= E

[
r(S0, A0) + γE

[
∞

∑
t=0

γtr(St, At)

⏐⏐⏐⏐⏐ S1

] ⏐⏐⏐⏐⏐ S0 = s

]
= E [r(S0, A0) + γvπ(S1) | S0 = s] ,

where the last step follows from the law of total expectation. We can then

expand this expectation by marginalizing over A0 and S1 conditioned on the

some initial state S0 = s and obtain:

vπ(s) = ∑
a∈A

π (a | s)
(

r(s, a) + γ ∑
s′

P
(
s′
⏐⏐ s, a

)
vπ(s′)

)
. (2.2)

We use the notation Qπ(s, a) for the expected sum of discounted rewards from

a designated state and action, which also admits a recursive form:

Qπ(s, a)=̇E

[
∞

∑
t=0

r(St, At)

⏐⏐⏐⏐⏐ S0 = s, A0 = a

]
= r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
vπ(s′) .
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In Sutton and Barto (2018), and for a large body of literature in reinforcement

learning from the AI community, the equations (2.2) are commonly called Bell-

man equations. However, for some authors (Puterman, 1994; Bertsekas, 2012),

the expression Bellman equations refers exclusively to the nonlinear optimality

equations which we will encounter in section 2.2. To avoid any confusion,

we adopt the terminology of Denardo (1981) and denote (2.2) as the policy

evaluation equations. Given a policy and an MDP, the policy evaluation prob-

lem consists in finding the associated value function vπ by solving equations

(2.2). This can be achieved either by direct (Householder, 1964) methods or

via successive approximations (Varga, 1962; Householder, 1964) in an iterative

fashion.

Let us first rewrite (2.2) in a more convenient matrix form by defining:

rπ(s)=̇∑
a

π (a | s) r(s, a) Pπ(s, s′)=̇∑
a

π (a | s) P
(
s′
⏐⏐ s, a

)
,

where rπ ∈ R|S| and Pπ ∈ R|S|×|S|. These equations do not involve actions

explicitly because the policy π has been coupled inside rπ and Pπ. From this

perspective, Pπ is now simply defining the dynamics of a Markov chain where

the actions have been abstracted away. The combination of rπ and Pπ defines a

Markov Reward Process (MRP) (Puterman, 1994): a Markov chain with rewards.

In vector form, the policy evaluation equations amount to the statement:

vπ = rπ + γPπvπ ,

where the value function for a policy is now seen as a vector vπ ∈ R|S|. By

grouping the terms involving vπ, we can obtain an equivalent expression:

vπ = rπ + γPπvπ ⇐⇒

vπ − γPπvπ = rπ

(I− γPπ)vπ = rπ .

The last line is the familiar form describing a linear system of equations “Ax =

b”. When solving the policy evaluation problem, vπ is seen as our unknown

“x” which we solve for by forming:

vπ = (I− γPπ)
−1rπ .
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The existence of a solution to the policy evaluation problem thus hinges on the

matrix I− γPπ being nonsingular. One way to address this question is with

the so-called spectral radius of a linear operator (Householder, 1964; Varga,

1962; Young and Rheinboldt, 1971; Puterman, 1994).

Definition 2.2 (Spectral radius). Let A ∈ Rn×n, then the spectral radius of that

matrix is ρ(A)=̇max{|λ1|, . . . , |λn|} where λi is the ith eigenvalue of A, or

equivalently, ρ(A)=̇ limk→∞ ∥Ak∥1/k using Gelfand’s formula (Gelfand, 1941).

Note that throughout this thesis, we will assume the infinity norm when writ-

ing ∥A∥=̇maxi ∑j A(i, j).

The spectral radius of a matrix is always less than or equal to its norm. This

follows from the fact that for any submultiplicative matrix norm (Watkins,

2004), ∥AB∥ ≤ ∥A∥ ∥B∥ for any A ∈ Rn×n, B ∈ Rn×n. Using Gelfrand’s

formulation for the spectral radius, we then have ρ(A) = limk→∞ ∥Ak∥1/k ≤
∥A∥. Another way (Watkins, 2004) to obtain the same inequality is through

the definition of the spectral radius of a matrix in terms of its eigenvalues. If

λ is an eigenvalue of A, then it must be that Ax = λx for some eigenvector x.

Taking the norm on both sides, we then establish that:

∥λx∥ = |λ| ∥x∥ = ∥Ax∥ ≤ ∥A∥ ∥x∥ .

This inequality holds for any induced matrix norm (also called operator norm)

(Watkins, 2004), such as the infinity norm assumed here. Hence, |λ| ≤ ∥A∥
for any eigenvalue λ of A – including the one of maximum modulus. Because

ρ(A) = max{|λi|}n
i=1, we then need to have ρ(A) ≤ ∥A∥.

Lemma 2.3. When the discount factor satisfies 0 ≤ γ < 0, the inverse of I− γPπ of

exists and:

(I− γPπ)
−1 =

∞

∑
t=0

(γPπ)
t . (2.3)

Proof. This follows directly from (Puterman, 1994, corrolary C.4) which shows

that (I − γPπ)−1 exists only when ρ(γPπ) < 1. Because Pπ is a stochastic

matrix (Cinlar, 1975), ∑s′ Pπ(s, s′) = 1 for any state s so ρ(γPπ) ≤ ∥γPπ∥ <

1.
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The series on the right-hand side of (2.3) is a Neumann series (Puterman, 1994)

and can be though of as a generalization of the scalar geometric series to op-

erators. In this expression, each row of Pt
π (the t-th power of Pπ) contains the

distribution over the next states t steps in the future. In other words, if we

choose a row s and column s′, then Pt
π(s, s′)=̇P (St = s′ | S0 = s): the probabil-

ity that the process is in state s′ t steps into the future if it started from state s.

Hence, when taking the sum to infinity in (2.3), we are effectively marginaliz-

ing over all possible paths between any two states. The entries of (I− γPπ)−1

then have the following meaning:

(I− γPπ)
−1 (s, s′) =

∞

∑
t=0

γtPπ

(
St = s′

⏐⏐ S0 = s
)

.

2.1.1 Iterative Solution to the Policy Evaluation Problem

Our analysis in the previous section showed than when the discount factor

is strictly less than 1, the value function of a policy is given by vπ = (I −
γPπ)−1rπ. A direct approach for computing this expression may consist in first

inverting the matrix explicitly and then computing the matrix-vector product

with rπ. This naive approach is however almost always avoided in practice

because of numerical instabilities (Watkins, 2004). A better solution would be

to solve for vπ through a QR factorization (Householder, 1964; Watkins, 2004)

of I − γPπ without ever computing the inverse explicitly. While gaining in

numerical stability, going through the QR factorization step does not lead to

substantive computational saves since it would require O(|S|3) in time, as is

also the case for matrix inversion.

An alternative to the direct approach is to iteratively improve an approxi-

mation to the solution based on an operator-theoretic point of view on the

policy evaluation equations (2.2). In fact, we can define a linear operator

Tπ : R|S| → R|S| whose effect on any v ∈ R|S| is the following:

Tπv = rπ + γPπv .

The value function vπ corresponding to the policy π then satisfies Tπvπ = vπ:

ie. vπ is the fixed-point of Tπ. Our previous discussion on the existence of a

solution to the policy evaluation equations was based on the eigenspectrum of
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γPπ. Specifically, we have seen that a solution exists when ρ(γPπ) < 1. Under

the operator point of view, this discussion now translates into an inquiry on

the convergence of Tπ to a fixed-point, which can be shown using Banach

fixed-point theorem (Banach, 1922).

Definition 2.4 (Contraction mapping). Let U be a Banach space. The operator

T : U → U is a contraction mapping if for any u, v ∈ U ∥T v− T u∥ ≤ α∥v− u∥
for some 0 ≤ α < 1.

Definition 2.5 (Uniform Convergence). A sequence {vk} is said to converge to

v if:

lim
k→∞
∥vk − v∥ = 0 .

Theorem 2.6 (Banach Fixed-Point Theorem). Let U be a Banach space. If T : U→
U is a contraction mapping on U, then:

1. There exists a unique fixed point v⋆ ∈ U such that T v⋆ = v⋆.

2. v⋆ can be found in the limit of the sequence defined by vk+1 = T vk, where v0 is

arbitrary.

Proof. The proof can be found in Banach (1922), and (Puterman, 1994, theorem

6.2.3). The general outline is the following: The second statement regarding

the iteration sequence is shown by establishing that {vk} is a Cauchy sequence.

The fact that T v⋆ = v⋆ can then be established by first applying the triangle

inequality:

∥T v⋆ − v⋆∥ = ∥ (T v⋆ − vk) + (vk − v⋆) ∥ ≤ ∥T v⋆ − vk∥+ ∥vk − v⋆∥ .

Because T is a contraction:

∥T v⋆ − T vk−1∥+ ∥vk − v⋆∥ ≤ ∥v⋆ − vk−1∥+ ∥vk − v⋆∥ ,

which means that:

∥T v⋆ − v⋆∥ ≤ ∥v⋆ − vk−1∥+ ∥vk − v⋆∥ .

By virtue of {vk} being a Cauchy sequence, we know that we can make the

distance between ∥vk − v⋆∥ arbitrarily small with large values of k: ie. vk
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converges to v⋆. This means that the right-hand side of the inequality can be

annihilated and we have T v⋆ = v⋆.

Casting the policy evaluation problem as an instance of fixed-point methods

has the obvious advantage of providing us with a template for designing new

iterative policy evaluation algorithms. This follows directly from the second

statement of theorem 2.6 which suggests that the repeated application of the

policy evaluation operator Tπ converges to the value function vπ for any initial

guess v(0)π . But in order for all of this hold, we need to establish that Tπ is

indeed a contraction mapping.

Lemma 2.7. Tπ is a contraction mapping.

Proof. Applying the definition (2.4) of a contraction and because Pπ is stochas-

tic:

∥Tπv− Tπv′∥ = ∥γPπ(v− v′)∥ ≤ γ∥Pπ∥ ∥v− v′∥ = γ∥v− v′∥,

Hence Tπ is a contraction if the discount factor is 0 ≤ γ < 1.

Algorithm 1: Iterative Policy Evaluation
v = 0
Input: A stationary policy π (deterministic or randomized), and discounted

MDP.
Pre-compute:
rπ ∈ R|S|, where r(s)=̇∑a π (a | s) r(s, a)
Pπ ∈ R|S|×|S|, where Pπ(s, s′) = ∑a P (s′ | s, a)π (a | s)
Initialize:
v← 0, v ∈ R|S|

repeat
v← rπ + γPπv

until a fixed number of steps is reached, or other exit condition (eg. using a bound)

The fixed-point iteration scheme based on Tπ can be implemented efficiently

by directly using the vector form of the policy evaluation equations. This is

shown in algorithm 1. On modern computer architectures and GPU hardware,

such dense operations are especially well-suited (Dongarra et al., 1988; Dubois

et al., 1996; Volkov and Demmel, 2008) and tend to yield better performance

than their scalar counterparts.
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However, it may still be the case that non-vectorized implementations perform

favorably when the matrix Pπ is sparse. This would be the case for example

when the average branching factor is small. This could come from the fact that

the set of available actions varies from state to state, where in certain states only

a few actions are possible, or when certain actions have a near-deterministic

effect over a few possible next states.

2.1.2 Temporal Difference Learning

Temporal difference learning is a Stochastic Approximation (SA) (Robbins and

Monro, 1951; Benveniste et al., 1990; Kushner and Yin, 2003) algorithm for

finding the parameters of a parameterized value function for a given policy.

In the linear case, we represent the value function as v̂π(s; w)=̇ϕ⊤s w where ϕs

is a vector of features provided by the system designer. The tabular case can

be seen as a special case of this representation for the choice ϕs = es ∈ R|S|:

the vector of zeros except in position s where it is 1. The nonlinear case is also

addressed by TD – although with a loss of theoretical guarantees (Tsitsiklis and

Roy, 1997a) – for any differentiable representation of the value function. When

function approximation is introduced, the true value function underlying a

given policy may no longer be representable in that space and the resulting

solution will be approximate.

In the TD(0) algorithm, the parameters w of the value function are updated

along the stationary distribution induced by π in the MDP according to the

update rule:

δt=̇Rt+1 + γv̂π(St+1; wt)− v̂π(St; wt)

wt+1 = wt + ϵtδt∇wv̂π(St; wt) ,

where ϵt is a learning rate satisfying the Robbins Monro conditions ∑∞
t=0 ϵt =

∞, ∑∞
t=0 ϵ2

t < ∞ (Robbins and Monro, 1951). A parameter λ ∈ [0, 1] can also be

introduced, leading to a variation called TD(λ):

wt+1 = wt + ϵtδt

t

∑
k=0

(γλ)t−k∇wv̂π(Sk; wt) . (2.4)
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The summation from 0 ≤ k ≤ t in this update can be computed online using

an eligibility trace that is updated after each step:

z(t)w =̇γλz(t−1)
w +∇wv̂π(St; wt)

wt+1 = wt + ϵtδtz
(t)
w . (2.5)

The meaning of eligible here stems from the fact that the eligibility trace vector

zw marks the weights that are eligible for reinforcement: an expression that

originated (Sutton and Barto, 2018) from early work on trial-and-error learning

(Klopf, 1982).

2.1.2.1 Lambda Return

We see from (2.4) that setting λ = 0 yields the TD(0) update. But what is the

meaning of TD(λ) for λ > 0 ? Watkins (1989) showed that the effect of TD(λ)

can be understood as if each TD update step involves taking an infinite convex

combination of n-steps returns of the form:

G(λ)
t =̇(1− λ)

∞

∑
n=1

λn−1

(
t+n−1

∑
k=t

γk−tr(Sk, Ak) + γnvπ(St+n)

)
.

From an operator-theoretic point of view, the λ-return leads to the so-called

λ-operator whose effect (in matrix form) on vπ is:

T (λ)
π vπ=̇(1− λ)

∞

∑
n=0

λn

(
n

∑
k=0

(γPπ)
k rπ + (γPπ)

n+1 vπ

)
= vπ .

A useful connection can be made between the λ-operator in this form and the

TD error.

Proposition 2.8. The effect of the λ-operator on vπ can also be described by:

T (λ)
π vπ = (I− γλPπ)

−1 (rπ + γPπvπ − vπ) + vπ .
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Proof.

T (λ)
π vπ=̇(1− λ)

∞

∑
n=0

λn

(
(γPπ)

n+1 vπ +
n

∑
k=0

(γPπ)
k rπ

)

= (1− λ)
∞

∑
n=0

(λγPπ)
n (γPπ)vπ + (1− λ)

∞

∑
n=0

n

∑
k=0

λn (γPπ)
k rπ

= (1− λ) (I− γλPπ)
−1 (γPπvπ) + (I− γλPπ)

−1 rπ

= (I− γλPπ)
−1 (rπ + (1− λ)γPπvπ)

= (I− γλPπ)
−1 (rπ + γPπvπ − vπ + (I− γλPπ) vπ)

= (I− γλPπ)
−1 (rπ + γPπvπ − vπ) + vπ

This result can be found without proof in equation 3 of Geist and Scherrer

(2014). It can also be verified more easily via the matrix splitting approach

of chapter 4. In fact, (Chen, 2005, section 3.2) refers to this form (in the

broader context of matrix preconditioning) as a generalized Richardson iteration

and (I− γλPπ) as a residual correction operator.

As usual, the inverse (I− γλPπ)
−1 in proposition 2.8 exists when γλ < 1 and

can be written in terms of its Neumann series expansion:

(I− γλPπ)
−1 (rπ + γPπvπ − vπ) =

∞

∑
t=0

(γλPπ)
t (rπ + γPπvπ − vπ)

The vector rπ + γPπvπ − vπ appearing in the above equation corresponds to

the expected immediate TD error. It follows that an element “s” of this vector

is:

e⊤s (I− γλPπ)
−1 (rπ + γPπvπ − vπ) = E

[
∞

∑
t=0

(γλ)t δt

⏐⏐⏐⏐⏐ S0 = s

]
.

The policy evaluation equations under the λ-operator in proposition 2.8 can

then be written in component form as:

vπ(st) = vπ(st) + E

[
∞

∑
k=t

(γλ)k−t δt

⏐⏐⏐⏐⏐ St = st

]
.
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Subtracting the value term vπ(st) from this expression would leaves us with

an expected sum of TD error, which means that:

E
[

Gλ
t − vπ(st)

⏐⏐⏐ St = st

]
= E

[
∞

∑
k=t

(γλ)k−t δt

⏐⏐⏐⏐⏐ St = st

]
.

An interpretation for this expression is that the difference of G(λ)
t (which can

only be measured in the future) and vπ(st) is equal to sum of differences in

predictions: this is the main insight developed by Sutton (1988). As shown in

the previous section, the online implementation of TD(λ) (2.4) can be obtained

by maintaining the sum of TD errors on the right-hand side using an eligibility

trace.

2.1.2.2 Projected Equations

Tsitsiklis and Roy (1997b) established the convergence of TD(λ) in the online

and linear setting by studying the ordinary differential equation (ODE) asso-

ciated with the sequences of iterates shown in (2.4). In this kind of analysis

(Benveniste et al., 1990; Kushner and Yin, 2003), we study the dynamics of

a deterministic counterpart to the original algorithm by averaging the random

iterates under the stationary distribution of the current policy.

In the linear case, the solution found by TD(λ) is shown to satisfy the so-called

projected form of the Bellman equations (Bertsekas, 2012), also more succinctly

called projected Bellman equations. Let Φ ∈ R|S|×k be a matrix of k-dimensional

features for the parameter vector w ∈ Rk. The linearly parameterized value

function v̂π = Φw satisfies:

ΠT (λ)
π v̂π = v̂π ,

where Π=̇Φ
(
Φ⊤ΞΦ

)−1
Φ⊤Ξ, Π ∈ R|S|×|S| is the hat matrix (Christensen,

2011) and Ξ is a diagonal matrix containing the stationary distribution of π

in the MDP. The matrix Π therefore corresponds to a projection with respect

to a weighted norm under the stationary distribution dπ. This norm is defined

as: ∥v∥2
dπ
=̇v⊤Ξv, for any v ∈ R|S|. This means that the application of Π to

any v ∈ R|S| yields its closest vector in the subspace spanned by the columns
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of the feature matrix:

Πv=̇Φw⋆

w⋆=̇ argmin
w∈Rk

∥v−Φw∥2
dπ

.

The projected Bellman equations therefore arise from the composition of two

operators which we call the projected Bellman operator: the λ-operator followed

by a projection onto V=̇{Φw : w ∈ Rk}. Except for the case where Φ is the ma-

trix of one-hot features (the identity matrix), an application of the λ-operator

may not result in a value function representable by the chosen features: hence

the projection down into the representable space. Using proposition 2.8, we

find that the vector of parameters w that best approximates the value function

of policy π can be found as the solution to the following equations Tsitsiklis

and Roy (1997a); Boyan (2002); Bertsekas (2012):(
Φ⊤Ξ (I− γλPπ)

−1 (I− γPπ)
−1

Φ
)

w = Φ⊤Ξ (I− γλPπ)
−1 rπ .

The existence of w in the projected Bellman equations can be established by

showing that the projected Bellman operator is a contraction with respect to the

norm ∥ · ∥dπ
. Our choice of weighted norm plays a crucial role in establishing

this property, and more specifically, the fact that the weighting is under the

stationary distribution of the current policy: the on-policy distribution. This

condition allows us to establish the following important fact.

Lemma 2.9. For any v ∈ R|S|,

∥Pπv∥dπ
≤ ∥v∥dπ

.

Proof. From (Bertsekas, 2012, lemma 6.3.1):

∥Pπv∥2
dπ

= ∑
s

dπ(s)

(
∑
s′

Pπ(s, s′)v(s′)

)2

≤∑
s

dπ(s)∑
s′

Pπ(s, s′)v(s′)2

= ∑
s

dπ(s)v(s)2 = ∥v∥2
dπ

,

because dπ is a stationary distribution and d⊤π Pπ = d⊤π .
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Equipped with lemma 2.9, we can now show that the λ-operator is a contrac-

tion mapping under this choice of weighted norm.

Lemma 2.10. T (λ)
π is a contraction mapping with respect to ∥ · ∥dπ

.

Proof. In matrix form, the λ-return can be written as:

T (λ)
π v = (I− γλPπ)

−1 rπ + γ (I− γλPπ)
−1 (1− λ)Pπvπ

It then follows that for any v, v′ ∈ R|S|:

∥T (λ)
π v− T (λ)

π v′ ∥dπ
= ∥γ(1− λ) (I− γλPπ)

−1 Pπ

(
v− v′

)
∥dπ

≤ γ(1− λ)∥
∞

∑
t=0

(γλ)t Pt+1
π

(
v− v′

)
∥dπ

≤ γ(1− λ)
∞

∑
t=0

(γλ)t ∥Pt+1
π

(
v− v′

)
∥dπ

≤ γ(1− λ)
∞

∑
t=0

(γλ)t ∥v− v′∥dπ

=
γ(1− λ)

1− γλ
∥v− v′∥dπ

.

This result is adapted from (Bertsekas, 2012, proposition 6.3.2).

Having established that the λ-operator is a contraction, we need to ask whether

its composition with the projection operator remains a contraction. As it turns

out, Π can be shown to corresponds to nonexpansive operator rather than a

contraction. An operator is nonexpansive when its associated Lipschitz con-

stant is 1 instead of being strictly smaller than 1, as in the contractive case.

Nevertheless, the composition of the λ-operator with the projection operator

maintains the contractive property.

Lemma 2.11. For any v, v′ ∈ R|S|,

∥Πv−Πv′∥dπ
≤ ∥v− v′∥dπ

.

Proof. Adapted from (Bertsekas, 2012, proposition 6.3.1). From a geometrical

perspective, the projection Πv gives us the closest vector in the subspace V
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spanned by the columns of Φ. Hence, the vector v−Πv = (I−Π)v is orthog-

onal to the subspace V and by the Pythagorean theorem:

∥v∥2
dπ

= ∥Πv∥2
dπ

+ ∥ (I−Π) v∥2
dπ

.

Using this fact, we can establish that for u=̇v− v′:

∥Πu∥2
dπ
≤ ∥Πu∥2

dπ
+ ∥(I−Π)u∥2

dπ
= ∥u∥2

dπ
,

where the inequality simply follows from seeing Πu as one side of the triangle.

Because Π is a nonexpansion, and T (λ)
π is a contraction, it follows that their

the composition ΠT (λ)
π (the projected Bellman operator) is also a contraction:

∥ΠT (λ)
π v−ΠT (λ)

π v′∥dπ
≤ ∥T (λ)

π v− T (λ)
π v′∥dπ

≤ γ(1− λ)

1− γλ
∥v− v′∥dπ

.

Having established that the projected Bellman operator is a contraction, we

can derive the following bound that characterizes the error to the true value

function in proportion to the irreducible error inherent to the choice of features.

Proposition 2.12. Let vπ be the true value function and v̂π = Φw the unique

solution to the projected Bellman equation:

∥vπ − v̂π∥dπ
≤ 1√

(1− κ2)
∥vπ −Πvπ∥dπ

,

where κ=̇
(

γ(1−λ)
1−γλ

)2
.

Proof. This result is adapted from (Bertsekas, 2012, proposition 6.3.2). Using

the Pythagorean theorem once again, and noting that Πv̂π = v̂π (because v̂π

already lies in V), we have:

∥vπ − v̂π∥2
dπ

= ∥Π (vπ − v̂π) ∥2
dπ

+ ∥ (I−Π) (vπ − v̂π) ∥2
dπ

= ∥Πvπ − v̂π∥2
dπ

+ ∥vπ −Πvπ∥2
dπ

.
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Furthermore, because vπ is the fixed point of T (λ)
π and is v̂π the one associated

with ΠT (λ)
π , we can write the right-hand side of the last equation as follows:

∥vπ − v̂π∥2
dπ

= ∥ΠT (λ)
π vπ −ΠT (λ)

π v̂π∥2
dπ

+ ∥vπ −Πvπ∥2
dπ

≤
(

γ(1− λ)

1− γλ

)2

∥vπ − v̂π∥2
dπ

+ ∥vπ −Πvπ∥2
dπ

,

and where we use the fact that the projected Bellman operator is a contraction

on the last line. Re-arranging the terms, and letting κ=̇
(

γ(1−λ)
1−γλ

)2
we finally

obtain:

(1− κ2)∥vπ − v̂π∥2
dπ
≤ ∥vπ −Πvπ∥2

dπ
.

Proposition 2.12 provides some insights on the nature of the bias-variance

tradeoff involved in the choice of the λ parameter. In fact, we see that as

λ → 1 the contraction factor κ becomes smaller. Note also that the right-hand

side of the inequality represents the error inherent to the choice of features. In

the tabular case, we would have Φ = I and the error ∥vπ −Πvπ∥dπ
is zero. In

the more general case, Πvπ is the best approximation (Bertsekas, 2012) under Φ

and we are left with only λ to control the bias v̂π −Πvπ. While larger values

of λ reduce this error, it also leads to more variance in the resulting value esti-

mates: Bertsekas (2012) refers to this as the simulation noise. Surprisingly, very

few results are currently available regarding the nature of this tradeoff as well

as methods for selecting λ optimally: Kearns and Singh (2000); Konda (2002);

White and White (2016); Mann et al. (2016).

2.2 Bellman Optimality Equations

Definition 2.13 (Optimal Policy). A policy π⋆ is optimal when its value func-

tion is such that for any other π ̸= π⋆ and for any state s, vπ⋆(s) ≥ vπ(s).
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The optimal value function v⋆ (the value function associated with an optimal

policy) satisfies a nonlinear system of equations that we call the Bellman opti-

mality equations:

v⋆ = max
π∈ΠMD

(rπ + γPπv⋆) . (2.6)

where ΠMD denotes the set of deterministic Markov policies. We can also write

these equations more simply in component form:

v⋆(s) = max
π∈ΠMD

(
r(s, π(s)) + γ ∑

s′
P
(
s′
⏐⏐ s, π(s)

)
v⋆(s)

)
= max

a

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
v⋆(s′)

)
.

In a finite discounted MDP, there exists at least one optimal stationary de-

terministic policy that satisfies the Bellman optimality equations (Puterman,

1994). The restriction to deterministic policies in (2.6) does not affect the ques-

tion of optimality and simply eases the development of control algorithms: al-

gorithms for finding optimal policies.

Proposition 2.14. The maximum on the right-hand size of the Bellman optimal-

ity equations is also attained in the class of stationary randomized Markov policies.

Searching in the space of deterministic policies does not involve any loss of optimality.

max
π∈ΠMD

(rπ + γPπv) = max
π∈ΠMR

(rπ + γPπv) ,

where ΠMD and ΠMR denote the class of stationary deterministic and randomized

policies respectively.

Proof: Adapted from (Puterman, 1994, proposition 6.2.1).

Pick any randomized policy π ∈ ΠMR. Because π (· | s) is a conditional distribution

over actions:

max
a

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
v(s′)

)

= ∑
a

π (a | s)max
a

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
v(s′)

)

≥∑
a

π (a | s)
(

r(s, a) + γ ∑
s′

P
(
s′
⏐⏐ s, a

)
v(s′)

)
.
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It means that:

max
π∈ΠMD

(rπ + γPπv) ≥ max
π∈ΠMR

(rπ + γPπv)

The inequality in the other direction follows from the fact that the class of randomized

policies is strictly larger than the class of deterministic ones.

The stationary deterministic policy π⋆ that selects actions according to:

π⋆(s)=̇ argmax
a

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
v⋆(s′)

)
,

is called the greedy policy and can be obtained after having found v⋆ as the

fixed point of the Bellman optimality operator L:

Lv=̇ max
π∈ΠMD

(rπ + γPπv) .

The optimal value function satisfies Lv⋆ = v⋆. After having established that L
is a contraction mapping, we will be able to leverage theorem 2.6 to find v⋆ as

the fixed point in limt→∞ Ltv = v⋆.

The resulting fixed-point iteration algorithm based on L is called value iter-

ation (Bellman, 1957; Howard, 1960) or the method of successive approximation

(Blackwell, 1965; Denardo, 1967) (mostly in older literature).

Lemma 2.15 (The Bellman operator is a contraction mapping). For any two value

functions v and v′:

∥Lv−Lv′∥ ≤ γ∥v− v′∥ .

where L is the Bellman optimality operator (2.6) and γ is a discount factor strictly

smaller than 1.
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Proof. We note that for any Q : S×A → R associated with a value function

v : S→ R and for any Q′ : S×A→ R corresponding to a v′ : S→ R:

|max
a

Q(s, a)−max
a

Q′(s, a)| ≤ max
a
|Q(s, a)−Q′(s, a)|

= γ max
a ∑

s′
P
(
s′
⏐⏐ s, a

)
|v(s′)− v′(s′)|

≤ γ max
s
|v(s)− v′(s)|

By the definition of a contraction (2.4), it follows under the infinity norm that:

∥Lv−Lv′∥=̇max
s
|max

a
Q(s, a)−max

a
Q′(s, a)| ≤ γ∥v− v′∥ .

A more general proof can also be found in (Puterman, 1994, theorem 6.2.3).

The value iteration algorithm follows the same template as the iterative policy

evaluation procedure previously shown in algorithm 1. However, this time

we are only given an MDP as input since as our goal is to output an optimal

policy.

Algorithm 2: Value Iteration
Input: A discounted MDP
Output: The optimal state-action value function Q⋆ for this MDP.
Initialize:
Q⋆ ← 0, Q⋆ ∈ R|S|×|A|

repeat
forall s ∈ S, a ∈ A do

Q⋆(s, a)← r(s, a) + γ ∑s′ P (s′ | s, a)maxa Q⋆(s′, a)
end

until a fixed number of steps is reached, or other exit condition (Puterman, 1994)

2.2.1 Policy Iteration

The value iteration algorithm follows directly from the operator-theoretic point

of view on the Bellman optimality equations (2.6). Every application of the

Bellman optimality operator thus involves a one-step look-ahead followed by

a maximization operation across actions. Rather than propagating the value

only for the next states, the policy iteration algorithm (Howard, 1960) solves the
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policy evaluation equations for the current candidate optimal policy before

proceeding to a maximization step – also called greedification step (Sutton and

Barto, 2018). In policy iteration, the role of the value function is to support

the search of an optimal policy. This is why policy iteration was originally

referred to as approximation in policy space (Howard, 1960; Bellman, 1954, 1957):

to highlight the distinction with value iteration in which an approximation of

the optimal value function is successively refined.

Algorithm 3: Policy Iteration
Input: A discounted MDP
Output: An optimal deterministic stationary policy
Initialize: π0 arbitrarily
k← 0
repeat

Policy Evaluation:
vπk ← (I− γPπk)

−1 rπk
Policy Improvement:

πk+1 ← argmaxπ∈ΠMD (rπ + γPπvπk)
k← k + 1

until πk+1 = πk

In this algorithm, the policy evaluation step need not be computed by a direct

method, as implied by the matrix inverse, but can also be obtained with the

iterative policy evaluation procedure 1. In practice, the policy improvement

step is always computed component-wise and not directly over the space of

deterministic policies ΠMD (Puterman, 1994). The improved policy πk+1 is

obtained as follows:

πk+1(s) = argmax
a

Qπk(s, a) = argmax
a

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
vπk(s

′)

)
.

Remarkably, improving the policy in a single component is sufficient to guar-

antee convergence of policy iteration. This property follows from a more gen-

eral result that Sutton and Barto (2018) call the policy improvement theorem. The

idea is intuitively simple: let’s assume that a policy currently achieves a certain

value vπ(s) in a given state. In order to obtain more expected return, we con-

template the effect of choosing a different action in state s (vaguely speaking a

local perturbation) and following π onwards. Based on the outcome or this pro-

cess, we then update our current policy to select the action that provided the
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highest return. More precisely, the improved policy πk+1 should now satisfy:

rπk+1 + γPπk+1vπk ≥ vπk = rπk + Pπkvπk ,

with a strict inequality for at least one state. Puterman (1994) uses the expres-

sion v-improving to refer to a policy that satisfies the above inequality, for a

given v: πk+1 is vπk-improving for example.

Proposition 2.16. Let πk and πk+1 be two successive policies generated during the

course of policy iteration:

vπk+1 ≥ vπk .

Proof. When selecting a new policy πk+1 among all vπk-improving policies, it

means that:

rπk+1 + γPπk+1vπk ≥ vπk ⇐⇒ rπk+1 ≥
(
I− γPπk+1

)
vπk .

Because
(
I− γPπk+1

)
vπk+1 = rπk+1 , by multiplying on both sides we obtain:

(
I− γPπk+1

)−1 rπk+1 = vπk+1 ≥ vπk .

This fact can also be found in (Puterman, 1994, proposition 6.4.1).

Theorem 2.17 (Convergence of Policy Iteration). In finite MDPs, policy iteration

converges to an optimal policy in a finite number of steps.

Proof. Proposition 2.16 shows that the value functions associated to a pair of

successive iterates of policy iteration are nondecreasing. This gives us a prin-

ciple by which we can enumerate deterministic stationary policies. In a finite

MDP, we know that there can only be |A||S| of them. It follows that eventu-

ally, we would either have enumerated them all or terminated earlier under

the condition πk+1 = πk. This condition will necessarily be met because we

are breaking any possible ties in a consistent manner when taking the argmax.

Policy iteration must then terminate in a finite number of steps under the ter-

mination condition πk+1 = πk, at which point vπk+1 = vπk and:

vπk+1 = rπk+1 + γPπk+1vπk+1 = rπk+1 + γPπk+1vπk = max
πk+1∈ΠMD

rπk+1 + γPπk+1vπk .
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Therefore vπk+1 satisfies the Bellman optimality equations and πk+1 is an opti-

mal policy. See (Puterman, 1994, theorem 6.4.2) for further reference.

2.3 Discounted Weighting of States

Before delving into policy gradient methods in section 2.4, it is useful to spend

some time understanding the nature of the discounting weighting of states, a

quantity which frequently appears in their statement.

Definition 2.18. Let α ∈ R|S|, α⊤1 = 1 be a distribution over initial states, the

discounted weighting of states dα,γ,π is:

d⊤α,γ,π=̇α⊤ (I− γPπ)
−1 .

The notation chosen here is meant to emphasize the dependence on both the

initial distributions of states α and discount factor γ. In the average reward

setting, we will use a similar notation but this time to denote the stationary

distribution of a Markov chain. However, reaching the stationary distribution

also implies that a process is independent of its initial states, hence we will

simply write dπ without α as a subscript.

While it is tempting to think of dα,γ,π as a distribution, a simple calculation for

the case α = es shows that the rows of (I− γPπ)
−1 do not sum up to 1:

∑
s′

∞

∑
t=0

γtPπ

(
St = s′

⏐⏐ s
)
=

∞

∑
t=0

γt ∑
s′

Pπ

(
St = s′

⏐⏐ s
)
=

1
1− γ

.

Hence, dα,γ,π neither is a distribution, or for that matter a stationary distri-

bution, but simply is a discounted weighting of states – an expression used by

Sutton et al. (1999b). In order to work with a distribution, some authors (Alt-

man, 1999; Kakade, 2003; Thomas, 2014) prefer to use a normalized variant of

dα,γ,π defined as follows:

d̄α,γ,π=̇(1− γ)dα,γ,π

Kakade (2003) calls this quantity the discounted future state distribution while

Thomas (2014) refers to it as the discounted state distribution. In this case, taking
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the inner product of d̄α,γ,π with the reward vector gives us:

d̄⊤α,γ,πrπ = α⊤
∞

∑
t=0

γtPt
π (1− γ) rπ ,

which would be obtained in an MDP where all the rewards are scaled by 1− γ.

If the reward function is known to be within a certain interval r : S× A →
[0, Rmax] then using normalized rewards implies that vπ : S → [0, Rmax] and

not Rmax
1−γ as in the usual case. Furthermore, if the rewards are within [0, 1], it

also means that the normalized value function is at most 1.

The expected discounted sum of unnormalized discounted rewards (our usual

discounted return) is written in terms of d̄α,γ,π as follows:

1
1− γ

d̄⊤α,γ,πrπ = Ed̄α,γ,π
[r(St, At)] = α⊤vπ ,

and setting α = es in the above gives us vπ(s). Instead of working with a

discounted weighting over states only, it is also possible to use a representation

over a discounted weighting of state-action pairs, as often found in the dual of

linear programming solutions for MDPs (Puterman, 1994; Derman, 1970) or in

constrained formulations (Altman, 1999) (who uses occupation measure to refer

to the discounted weighting/distribution). In chapter 5, we use such a similar

occupation measure but over state-option pairs.

2.3.1 Recursive Expression

As we did for the policy evaluation equations, we can unroll the Neumman

series expansion of the discounted weighting of states to obtain a recursive

expression:

d⊤α,γ,π=̇α⊤
∞

∑
t=0

(γPπ)
t

= α⊤ + α⊤
∞

∑
t=1

(γPπ)
t

= α⊤ + γ

(
α⊤

∞

∑
t=0

(γPπ)
t

)
Pπ

= α⊤ + γd⊤α,γ,πPπ . (2.7)



Preliminaries 36

These equations look similar to the policy evaluation equations but where

d⊤α,γ,π plays the role of the “value function” and α is its associated reward

function. Hence, for any given initial distribution α, there exists a correspond-

ing linear system of equations whose solution is the discounted weighting of

states. In Sutton and Barto (2018), a similar expression for dα,γ,π is provided

for the so-called on-policy distribution in the undiscounted episodic case. In

the same way that the usual policy evaluation equations describe the expected

sum of discounted rewards, the recursive expression for dα,γ,π corresponds to

an expected sum of discounted indicator variables:

dα,γ,π(s)=̇∑
s0

α(s0)
∞

∑
t=0

γtPπ (St = s | S0 = s0)

= ∑
s0

α(s0)
∞

∑
t=0

γtE [1St=s | S0 = s0]

= Eα

[
∞

∑
t=0

γt1St=s

]
.

This interpretation of the discounted weighting of states as sum of indicator

variables can be leveraged in the design of learning algorithms as originally

shown by Dayan (1993).

Instead of having a set of evaluation equations for each s, we can also use

a more compact recursive expression involving a matrix A ∈ R|S|×|S| whose

rows are initial state distributions:

DA,γ,π = A
∞

∑
t=0

(γPπ)
t = A + γDA,γ,πPπ = A (I− γPπ)

−1 .

The choice A = I describes the evaluation equations associated with the so-

called Successor Representation (SR) (Dayan, 1993). Introduced in the context of

reinforcement learning, the SR approach leverages the fact that the value func-

tion vπ is linear in the discounted weighting of states: vπ = DA,γ,πrπ. Because

DA,γ,π does not depend on the reward function, once it has been obtained,

policy evaluation only involves O(|S|2) operations to compute a matrix-vector

product rather than the O(|S|3) which would otherwise be required for matrix

inversion when solving the policy evaluation problem from scratch. This prop-

erty is beneficial in problems where the reward function (the task) may change

but the transition matrix and policy remain the same. Of course, when the SR

is not given apriori, we must also incur a cost O(|S|3) initially to solve for D
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in (I− γPπ)D = I since D is nothing more but the inverse (I− γPπ). In that

sense, solving for the discounted weighting is as costly as solving for the value

function directly. We will see in chapter 4.4 that DA,γ,π can be interpreted as

a matrix preconditioner arising from a more general multi-step formulation for

the policy evaluation equations.

2.3.2 Average Reward and Discounting

Assumption 2 (Existence of a stationary distribution). The Markov chain induced

by any policy π in a given MDP has a unique limiting distribution dπ satisfying the

system of equations:

d⊤π Pπ = d⊤π .

We call dπ ∈ R|S| the stationary distribution of Pπ and it satisfies:

P⋆
π = 1d⊤π ,

where P⋆
π=̇ limN→∞ ∑N−1

t=0 Pt
π (Cinlar, 1975).

The average reward of a policy (from a given state) is defined generally (Put-

erman, 1994; Bertsekas, 2012) as:

gπ(s)=̇ lim
N→∞

1
N

E

[
N−1

∑
t=0

r(St, At)

⏐⏐⏐⏐⏐ S0 = s

]
.

and gπ is also referred to as the gain of policy π (Puterman, 1994). Under

assumption 2, the average reward is independent of the starting state and can

be written as:

gπ = lim
N→∞

1
N

N−1

∑
t=0

Pt
πrπ = P⋆

πrπ =
(

1d⊤π
)

rπ ,

and where all the components of gπ are the same. Hence, some authors (Sutton

and Barto, 2018; Kakade, 2001; Baxter and Bartlett, 2001; Singh et al., 1994) refer

to the average reward as the scalar resulting from taking the inner product of
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the stationary distribution with the reward vector:

η(π)=̇d⊤π rπ .

Interestingly, the average reward η(π) can be related to the discounted return

when taking the expectation over starting states according to the stationary

distribution dπ.

Proposition 2.19. The dπ-weighted average of the discounted values is proportional

to the average reward:

d⊤π vγ,π =
η(π)

1− γ
.

where vγ,π = (I− γPπ)
−1 rπ is the value function for the expected discounted sum

of rewards and dπ is the stationary distribution under Pπ.

Proof. Expanding vπ using the policy evaluation equations (2.2):

d⊤π vπ = d⊤π (rπ + γPπvπ) .

Because dπ is a stationary distribution, we have:

d⊤π vπ = d⊤π rπ + γd⊤π vπ ⇐⇒ d⊤π vπ =
d⊤π rπ

1− γ
.

Proposition 2.19 provides a relationship between the discounted return and the

average return when taking the expectation of the discounted values under the

stationary distribution. Using the Laurent series expansion (Puterman, 1994),

we can derive a complementary result connecting directly the average reward

with the discounted values in the limit of discount factor going to 1.

Proposition 2.20. Let vγ,π be the expected sum of discounted returns, and gπ the

average reward vector (bias):

lim
γ→1

(1− γ)vγ,π = gπ .
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Proof. The following proof is based on (Puterman, 1994, corollary 8.2.5) using

Laurent series. Note that the same result is also derived in Bertsekas (2012)

but using the properties of the determinant solely.

By expressing the discount factor in terms of the interest rate ϱ=̇(1− γ)γ−1 ⇒
γ = (1 + ϱ)−1 in (I− γPπ)

−1, we get:

(I− γPπ)
−1 =

(
I− (1 + ϱ)−1Pπ

)−1

=
(
(1 + ϱ)−1 ((ϱ + 1) I− Pπ)

)−1

= (1 + ϱ) (ϱI + (I− Pπ))
−1 .

This substitution exposes the matrix (ϱI + (I− Pπ))
−1 which is called the re-

solvent of I− Pπ. The resolvent admits the following Laurent series expansion

(Puterman, 1994, Theorem A.8, section A.6):

(ϱI + (I− Pπ))
−1 = ϱ−1P⋆

π +
∞

∑
t=0

(−ϱ)t
(
(I− Pπ + P⋆

π)
−1 (I− P⋆

π)
)t+1

Therefore, the expected sum of discounted normalized rewards can also be

written as:

(1− γ)vγ,π = (I− γPπ)
−1 rπ

= P⋆
πrπ +

1− γ

γ

∞

∑
t=0

(
− (1− γ)

γ

)t (
(I− Pπ + P⋆

π)
−1 (I− P⋆

π)
)t+1

rπ ,

where the first term is the average reward. As γ→ 1, the second term vanishes

and we are left with limγ→1(1− γ)vγ,π = gπ.

2.4 Policy Gradient Methods

Policy gradient methods are analogous to policy iteration in that in both cases

the search for an optimal policy is guided by a policy evaluation procedure.

Rather than representing the optimal greedy policy implicitly through the op-

timal value function, policy gradient methods operate within a designated

parametrized family of stationary randomized policies. Given the striking re-

semblance with policy iteration, some authors (Sutton et al., 1999b; Bertsekas,
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2012) also describe policy gradient methods as performing approximation in pol-

icy space: the terminology originally used by Bellman (1957) to describe policy

iteration.

The advantage of this approach is that it provides more freedom in the mod-

eling effort, allowing the practitioner to express potential prior knowledge re-

garding the structure of the optimal policy. The price to pay is of course that

the model may happen to be mis-specified: ie. when the chosen parametrized

family does not contain a policy whose value function is optimal. Under a

suitable choice of parameterized family of policies, policy gradient methods

may benefit from the regularities of the policy space, even when the under-

lying space of value function space is much more complex (Bertsekas, 2012).

Furthermore, the emphasis on randomized policy should not be thought so

much as a restriction but more as a feature, a blessing. As shown by Singh et al.

(1994); Sutton and Barto (2018), randomized policies may be the optimal kind

of policies to consider when facing imperfect knowledge about the state (par-

tial observability): a situation which would inevitably occur when introducing

function approximation. Note that this is contrary to proposition 2.14 that al-

lowed us to concentrate only on deterministic policies for the control problem.

In this setting, deterministic policies are sufficient because the state is fully

known: the tabular case. In the more general case, randomized policies may

come in handy.

Although both policy gradient methods and policy iteration use a value func-

tion to improve their approximation to the optimal policy, policy gradient

methods perform their improvement step using the gradient of some objective

with respect to the parameters of the policy; in policy iteration, the improved

policy is obtained from the greedy policy. Given an initial state distribution α,

the discounted objective for policy gradient methods is:

Jα(θ)=̇α⊤vθ = α⊤ (I− γPθ)
−1 rθ ,

where we used the subscript θ instead of πθ to ease notation. With the dis-

counted weighting of states 2.3 appearing in this expression, an equivalent

definition for this objective is:

Jα(θ)=̇d⊤α,γ,θrθ .
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By defining our objective with respect to an initial distribution over states,

the resulting set of maximizing policies is not optimal in the same sense as

in section 2.2. In fact, the kind of policies satisfying the Bellman optimality

equations 2.6 are said to be uniformly optimal (Altman, 1999): they are optimal

no matter where the system starts. In contrast, the policies obtained by policy

gradient methods in the discounted case may be optimal for one distribution

over initial states but not for a different one. This limitation also arises in

constrained MDPs (Altman, 1999) or in partial observable settings (Singh et al.,

1994; Bertsekas, 2012). In the average reward case, the assumption on the

existence of a stationary distribution dispenses us with the dependence on the

initial distribution in the resulting policies.

In order to proceed with the derivation of the policy gradient theorem (Sutton

et al., 1999b), we need to restrict our attention to the class of randomized poli-

cies. This requirement is meant first and foremost to provide us with smooth

gradients (Konda, 2002): a condition which would not be satisfied readily with

deterministic policies over discrete action spaces. Note that even if the set of

actions is continuous, the objective Jα(θ) may not be a smooth function of θ

(Konda, 2002). In the case of the deterministic policy gradient (Silver et al.,

2014) for example, smoothness is assumed rather than being satisfied by con-

struction.

Assumption 3. πθ is a stationary randomized policy and for any a ∈ A, s ∈ S,

πθ (a | s) is differentiable in θ.

Another benefit of randomized policies is that for problems with partial ob-

servability they might in fact be the optimal class of policies to consider (Singh

et al., 2004a; Sutton and Barto, 2018): ie. optimal deterministic policies may

not even exist. Partial observability arises naturally whenever value function

approximation is used (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 2018)

and having policies that are robust to imperfect information is certainly an

asset.

Theorem 2.21 (Policy Gradient Theorem). Under assumptions 1,3, and with 0 ≤
γ < 1:

∂Jα(θ)

∂θi
= ∑

s
dα,γ,θ(s)∑

a

∂πθ (a | s)
∂θi

Qθ(s, a) ,
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where θi is the ith component of θ and Qθ is the state-action value function of πθ.

Proof.

∂vθ(s)
∂θi

= ∑
a

(
∂πθ (a | s)

∂θi
Qθ(s, a) + πθ (a | s) ∂Qθ(s, a)

∂θi

)
= ∑

a
πθ (a | s)

((
∑

a

∂πθ (a | s)
∂θi

Qθ(s, a)

)
+ γ ∑

s′
P
(
s′
⏐⏐ s, a

) ∂vθ(s′)
∂θi

)

The last line was written so as to highlight the common structure with the

policy evaluation equations. This is also where we diverge from the proof

presented in the appendix of Sutton et al. (1999b). Let us then define:

h(i)
θ (s)=̇∑

a

∂π (a | s ; θ)

∂θi
Qθ(s, a) ,

where h(i)
θ ∈ R|S|. Furthermore, let f(i)θ =̇ ∂vθ

∂θi
, so that the recursive expression

for the derivative of the value function with respect to θi can now be written

in vector form as:

f(i)θ = h(i)
θ + γPθf(i)θ ,

and where Pθ is a shorthand notation for Pπθ
. Because ρ(γPθ) < 1, f(i)θ is the

solution to the linear system:

(I− γPθ) f(i)θ = h(i)
θ .

The derivative with respect to the objective Jα is then:

∂Jα(θ)

∂θi
= α⊤ (I− γPθ)

−1 h(i)
θ = d⊤α,γ,θh(i)

θ .

Corollary 2.22 (Evaluation Equations for the Policy Gradient). Let ∇θvθ(s) ∈
Rk and Fθ ∈ R|S|×k be the matrix whose rows contain the gradient of vθ evaluated at

every state: Fθ(s, ·) = ∇θvθ(s). Under the assumptions of theorem 2.21, the Jacobian

Fθ satisfies:

(I− γPθ) Fθ = Hθ , (2.8)
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where Hθ ∈ R|S|×k and Hθ(s, i) = ∑a
∂π(a | s ; θ)

∂θi
Qθ(s, a).

Proof. The result follows immediately from theorem 2.21 which gives an ex-

pression for the partial derivative with respect to a component θi of θ.

Corollary 2.22 establishes that the policy gradient admits the same form as

the policy evaluation equations (2.2) but where Hθ replaces what would oth-

erwise be the “reward” vector rθ. Remarkably, going from scalar “rewards” to

vector-valued “rewards” does not involve any special theoretical or algorith-

mic considerations. This stems from the fact that the existence of Fθ hinges

entirely on the matrix I− γPθ being invertible, without regards to the nature

of the “reward” term on the right-hand side of the equation. This means that

to obtain the policy gradient, one could either apply a direct method or solve

for Fθ using exactly the same iterative policy evaluation procedure as in algo-

rithm 1. In reinforcement learning, the idea of applying policy evaluation to

other reward-like quantities than the reward function from the MDP itself has

been described under the General Value Function (GVF) framework (Sutton

et al., 2011). To avoid overloading the word “reward”, it is preferable to call

the term Hθ a cumulant (White, 2015; Sutton, 2015b; Sutton and Barto, 2018) per

the GVF framework. To our knowledge, the idea of solving the policy gradient

in a dynamic programming fashion or through TD has never been attempted

in practice and may be an interesting future research avenue.

2.4.1 Estimation

Rather than forming Fθ explicitly, all policy gradient methods (Williams, 1992;

Marbach and Tsitsiklis, 1998; Sutton et al., 1999b; Bartlett and Baxter, 2000;

Konda, 2002; Kakade, 2003) sample the gradient in a model-free fashion. While

many seemingly different policy gradient estimators have been proposed in the

literature, they all have in common equations (2.8).

As a starting point for deriving a gradient estimator, we want to express the

policy gradient theorem as an expectation that we can estimate by sampling.

However, the fact that dα,γ,θ is not a distribution over states is our first obstacle

in this project. But as we have seen in section 2.3, a possible remedy is to work

with a normalized counterpart of the discounted weighting of states and later
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correct by a factor 1/(1− γ) (Kakade, 2003) to recover the intended expected

values:

∂Jα(θ)

∂θi
=

1
(1− γ)

Ed̄α,γ,θ

[
∑

a

∂πθ (a | St)

∂θi
Qθ(St, a)

]
. (2.9)

Getting unbiased estimates of this expectation requires special care here be-

cause the discount factor has been coupled inside the Markov chain. The

normalized discounted weighting of states is in fact of the following form:

d̄α,γ,θ = α⊤
∞

∑
t=0

(1− γ) (γPθ)
t .

The term (1− γ)γt in the above summation is from a geometric distribution

representing the probability that the trial at t + 1 is a first “success”. Using the

random horizon perspective on the discounted setting from lemma 2.1, 1−γ is

the parameter of a geometric distribution where “success” is the event of reach-

ing an absorbing state with probability 1− γ and “failure” is continuing for

one more step. Therefore, writing (1− γ)γt expresses the fact that the process

has continued for t steps, and on the last step, it transitioned to an absorbing

state with probability 1− γ. In order to sample from the distribution d̄α,γ,θ,

we would have to apply the policy in the MDP for one step, and upon enter-

ing the next state sample from the geometric distribution to decide whether

to terminate (perhaps prematurely) the trajectory. In practice, this approach

is never used because of the loss of samples due to truncation; instead, the

policy gradient is estimated from samples along the on-policy undiscounted

stationary.

This mismatch between the distribution used to estimate the policy gradient

and the one specified by the policy gradient theorem is an issue that was

brought back to light by Thomas (2014), which then led to a revision in Sut-

ton and Barto (2018). Moreover, Thomas (2014) showed that the undiscounted

estimator used for the discounted policy gradient was related to the gradient

of the average reward setting. This fact can also be found in earlier work on

policy gradient methods (Baxter and Bartlett, 2001; Konda, 2002; Kakade, 2003)

focusing on estimating the policy gradient in the average reward case. In this

body of work, discounting is seen as a knob on the bias-variance trade-off:

discounting is mean, not an end.



Preliminaries 45

Lemma 2.23. Let dθ be the stationary distribution induced by policy πθ in the given

MDP:

d⊤θ Fθ =
d⊤θ Hθ

1− γ
.

Proof. This is the same proof as in 2.19 but applied to Fθ instead of the value

function. This result can also be found in (Thomas, 2014, lemma 6.1), (Kakade,

2001, theorem 2), and implicitly in (Konda, 2002, section 2.4). Because dθ is a

stationary distribution:

d⊤θ Fθ = d⊤θ (Hθ + γPθFθ) = d⊤θ Hθ + γd⊤θ Fθ ⇐⇒ (1− γ)d⊤θ Fθ = d⊤θ Hθ ,

and where we leveraged the evaluation equations for the policy gradient from

corollary 2.22.

Because Hθ defined in corollary 2.22 contains the discount factor, the right-

hand side of the equation in lemma 2.23 is not equal to the gradient of the

average reward formulation. However, lemma 2.23 suggests that using the

term d⊤θ Hθ as an approximation of the average reward gradient is equivalent

to taking the discounted gradient from an initial state distribution α = dθ.

Rephrasing this statement the other way: using α = dθ as an initial state

distribution in the policy gradient theorem 2.21 leads to an approximation of

the average reward gradient. This is the essence of what (Sutton and Barto,

2018, chapter 10) are trying to convey in their commentary on the “futility of

discounting”:

“Perhaps discounting can be saved by choosing an objective that sums

discounted values over the distribution with which states occur under the

policy [...]”

Given this connection with the average reward setting, (Konda, 2002, theo-

rem 2.13) suggests using dθ as an initial state distribution for implementing

the discounted gradient. In practice, this would however entail a construction

in which we simulate the undiscounted process up to a geometric stopping

time (lemma 2.1) and then switch to the stationary distribution – a probabilis-

tic analogue to proposition 2.20 which can also be found in (Puterman, 1994,

corollary 8.2.5). The resulting estimator would then be seen as an estimator
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of the normalized policy gradient 2.9 taken under the stationary distribution.

This approach is by no means more practical than just sampling from the nor-

malized policy gradient by truncation of the trajectories, which we already

deemed wasteful.

This led Thomas (2014) to propose a policy gradient estimator that is estimated

under the undiscounted distribution, but where discounting is integrated-back

explicitly in a multiplicative manner rather than via sampling. A convenient

way to see this is to write the recursive expression for the discounted policy

gradient as a sum of immediate gradients:

Fθ(s, ·) = E

[
∞

∑
t=0

γt ∑
a
∇θ (πθ (a | St)) Qθ(St, a)

⏐⏐⏐⏐⏐ S0 = s

]

For simplicity assume that Qθ is given, an estimator of the policy gradient in

the episodic setting is then:

Jα(θ) ≈
1
N

N

∑
i=1

T−1

∑
t=0

γt ∑
a
∇θ

(
πθ

(
a
⏐⏐⏐ s(i)t

))
Qθ(s

(i)
t , a) ,

where s(i)t denotes the state sampled at time t in the ith trajectory. In this case,

the samples are obtained under the undiscounted process and the discount

factor enters the estimator in a multiplicative fashion. The γt correction pro-

posed by Thomas (2014), and later shown in Sutton and Barto (2018), revolves

exactly around in this idea. Just as discounting of the rewards, the γ-corrected

assigns less importance to the later steps than the more recent ones. Despite

being mathematically correct, Thomas (2014) offers empirical evidence that

the unbiased estimator tends to perform worse than its biased counterpart.

An intuitive explanation for this phenomenon may be that discounting results

in a loss of information of the same nature as for the approach based on trun-

cated trajectories: discounting attenuates gradients, while geometric sampling

discards samples. Despite being mathematically equivalent, Thomas (2014) re-

ports that the explicit multiplicative discounting approach compares favorably

in practice to the truncation method.
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2.4.2 Monte-Carlo Estimators

Under the perspective of the policy gradient as a sum of discounted gradi-

ents, we now express the inner summation over actions as an expectation over

actions:

Fθ(s, ·) = E

[
∞

∑
t=0

γtE

[
∇θπθ (At | St)

πθ (At | St)
Qθ(St, At)

⏐⏐⏐⏐ St

] ⏐⏐⏐⏐⏐ S0 = s

]

= E

[
∞

∑
t=0

γt∇θ (log πθ (At | St)) Qθ(St, At)

⏐⏐⏐⏐⏐ S0 = s

]
. (2.10)

This transformation is valid only when the ratio ∇θπθ(At | St)
πθ(At | St)

is bounded, which

can be guaranteed whenever the probability of selecting an action always has

at least some small probability of being selected. This ratio can also be written

in another form using the fact that ∇θ log πθ (At | St) =
1

πθ(At | St)
∇θπθ (At | St).

This form involving the gradient of the likelihood function can be found under

different names depending on the field: characteristic eligibility (of θ) (Williams,

1992) or eligibility vector (Sutton and Barto, 2018) in reinforcement learning,

likelihood ratio derivative in the simulation literature (L’Ecuyer, 1990) or score

function in statistics (Cox and V., 1974).

Equation 2.10 can also be stated even more explicitly by expressing Qθ as a

sum of discounted rewards starting from the current state:

Fθ(s, ·) = E

[
∞

∑
t=0

γt∇θ (log πθ (At | St))
∞

∑
k=t

γk−tr(Sk, Ak)

⏐⏐⏐⏐⏐ S0 = s

]
.

We can estimate this expectation by taking Monte-Carlo samples along the

undiscounted process and computing the following quantity at the end of a

trajectory:

∆θ=̇
T−1

∑
t=0

γt∇θ (log πθ (at | st))
T−1

∑
k=t

γk−tr(sk, ak) .

Instead of collecting all samples in a batch, it is also possible to construct

iteratively ∆θ without having to store previous sampled transitions. To see

this, we need to apply the same kind of summation interchange as in the

proof of theorem 2.1, making sure that the indices are ordered according to
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0 ≤ t ≤ k < ∞:

Fθ(s, ·) = E

[
∞

∑
t=0

γt∇θ (log πθ (At | St))
∞

∑
k=t

γk−tr(Sk, Ak)

⏐⏐⏐⏐⏐ S0 = s

]

= E

[
∞

∑
k=0

r(Sk, Ak)
k

∑
t=0

γk−t (γt∇θ log πθ (At | St)
) ⏐⏐⏐⏐⏐ S0 = s

]
.

The term γt∇θ log πθ (At | St) in the inner summation is parenthesized to high-

light the factor γk−t which unavoidably appears in the derivation of a backward

view (Watkins, 1989; Kimura and Kobayashi, 1998; Tsitsiklis and Roy, 1997a;

Sutton and Barto, 1998). We obtain a recursive update rule for the inner sum

by pulling out the last term and adjusting the indices accordingly. For the

biased form of the policy gradient, we have:

z(k)θ =̇
k

∑
t=0

γk−tγt∇θ log πθ (At | St)

= γ

(
k−1

∑
t=0

γk−1−t∇θ log πθ (At | St)

)
+∇θ log πθ (Ak | Sk)

= γz(k−1)
θ +∇θ log πθ (Ak | Sk) .

The vector zk is called an eligibility trace: a memory or trace of the past gradients

decayed based on their recency. By incorporating the eligibility trace back into

2.10, we obtain a Monte-Carlo estimator for the episodic setting of the form:

∆θ =
T−1

∑
t=0

r(St, At)z
(t)
θ .

Interestingly, this form has the immediate rewards weighted by an accumula-

tion of past gradients whereas 2.10 uses immediate eligibility vectors∇θ log πθ

weighted by an accumulation of future rewards. The use of an eligibility trace

for the parameters θ gives us a causal (Sutton and Barto, 1998) estimator for

the policy gradient: an estimator which uses only information available up to

that point. Note that the above estimator using an eligibility trace on θ also

appeared in the Adaptive Heuristic Critic algorithm (Barto et al., 1983; Sut-

ton, 1984) in the context of stochastic learning automata (Barto et al., 1981). It

was only later with Williams (1992); Kimura and Kobayashi (1998); Marbach

and Tsitsiklis (1998); Sutton et al. (1999b); Konda and Tsitsiklis (2000); Baxter
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and Bartlett (2001) that it was re-discovered in the context of policy gradient

methods.

2.4.3 Advantage and TD Errors

Williams (1992) proposed a Monte-Carlo estimator using a baseline b : S → R

to reduce variance. Any such state-dependent baseline can be added to the

policy gradient without impacting the unbiasedness of the resulting estimator

because:

E

[
∑

a
∇θπθ (a | St) (Qθ(St, a)− b(s))

⏐⏐⏐⏐⏐ S0 = s

]

= Fθ(s, ·)−E

[
b(s)∇θ ∑

a
πθ (a | St)

⏐⏐⏐⏐⏐ S0 = s

]
= Fθ(s, ·) ,

where the last term disappeared because πθ is a distribution, and the gradient

of a constant is 0. While not initially recognized by Williams (1992), base-

lines correspond to the well-understood notion of control variates (Hammersley

and Handscomb, 1964; Rubinstein, 1981) in statistics. This connection appears

to have been first made by Greensmith et al. (2004) and has become a well-

accepted fact nowadays – despite Sutton and Barto (2018) avoiding it.

A common choice of baseline is the value function vθ
1 , resulting in a quantity

called the advantage function (Baird, 1993): Aθ(s, a)=̇Qθ(s, a)− vθ(s). This form

suggests that we could also form an estimator of the policy gradient that does

not rely on knowing Qθ, a function over S× A, and that learning vθ over S

might suffice. To see this, note that:

Qθ(s, a)− vθ(s) = r(s, a) + γ ∑
s′

P
(
s′
⏐⏐ s, a

)
vθ(s′)− vθ(s′) ,

1The subscript θ in vθ stands for the value function associated to the policy parameterized
by θ. We write v̂θ(s; w) when the value function is parameterized by a vector w.
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so that an equivalent form of the policy gradient would be:

Fθ(s, ·) = E

[
∑

a
∇θπθ (a | St) (Qθ(St, a)− vθ(s))

⏐⏐⏐⏐⏐ S0 = s

]
= E [∇θ (log πθ (At | St)) (r(St, At) + γvθ(St+1)− vθ(St)) | S0 = s] .

(2.11)

The quantity multiplying the eligibility vector on the right-hand side is the TD

error from section 2.1.2:

δt=̇Rt+1 + γvθ(St+1)− vθ(St) .

Therefore, we can write (Kimura and Kobayashi, 1998) the biased policy gra-

dient from (2.10) as:

Fθ(s, ·) = E

[
∞

∑
t=0
∇θ (log πθ (At | St))

((
∞

∑
k=t

γk−tr(Sk, Ak)

)
− vθ(St)

) ⏐⏐⏐⏐⏐ S0 = s

]

= E

[
∞

∑
t=0
∇θ (log πθ (At | St))

∞

∑
k=t

γk−tδk

⏐⏐⏐⏐⏐ S0 = s

]
. (2.12)

This result follows from recognizing that the inner sum involves a telescoping

series where every two consecutive terms vθ(Sk) cancelling each other:

∞

∑
k=t

γk−tδk =

(
∞

∑
k=t

γk−tr(Sk, Ak)

)
+

(
∞

∑
k=t

γk−t (γvθ(Sk+1)− vθ(Sk))

)
,

and the second term involving the differences converges to −vθ(St). Schulman

et al. (2016) re-discovered this form and introduced an additional “λ” param-

eter in the inner summation: ∑∞
k=t (λγ)k−t δk. The effect of this parameter is

to control the bias-variance tradeoff, with λ = 0 resulting in 2.11 and single

immediate TD term while λ = 1 leads to the advantage function. The bias-

variance interpretation and the mechanism at play are the same as for TD(λ)

(Sutton, 1984, 1988) shown in chapter 2.1.2.
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2.4.4 Actor-Critic Architecture

Up to now, we assumed that the value term Qθ in the policy gradient theorem

was either given apriori (presumably using a direct or iterative policy evalua-

tion methods of section 2.1) or estimated in a Monte-Carlo fashion using full

rollouts. A third option consists in learning the value function from samples

using Temporal Difference (TD) learning (Sutton, 1984, 1988): a model-free ap-

proach to the policy evaluation problem. The idea of learning a parametrized

policy by gradient ascent jointly with its associated value function was pio-

neered by (Barto et al., 1983; Sutton, 1984) in their Adaptive Heuristic Critic

algorithm. The resulting architecture, which nowadays is simply called actor-

critic (Sutton and Barto, 2018), was later analyzed theoretically by Marbach and

Tsitsiklis (1998); Konda and Tsitsiklis (2000); Konda (2002).

Value
function

Environment

Policy

ActionState

Actor

Reward

Actor Updates

Critic TD error

Figure 2.1 – The Actor-Critic Architecture

In the original actor-critic architecture, the temporal difference error provides

a reinforcement signal flowing not only through the critic but also through

the actor which executes the parameterized policy in the environment. The

critic is more of an ally than an adversary to the actor as it seeks to improve

its performance using value estimates. The combination of a TD(0) learning

algorithm for the critic and the bias form of the policy gradient is shown in

algorithm 4. In this algorithm, the TD error term in the actor update comes

from the advantage estimator shown in section 2.4.3 where Qθ is estimated

with the one-step return. Many other variants on the actor-critic architecture
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Algorithm 4: Actor-Critic with One-Step TD updates
Initialize (or other initialization method):
Input: Critic learning rate ϵ(w) and actor learning rate ϵ(θ)

w← 0
θ← 0
repeat

δt=̇r(St, At)− v̂θ(St; w)
if St+1 is not terminal then

δt ← δt + γv̂θ(St+1; w)
end

w = w + ϵ
(w)
t δt∇wv̂θ(St; w)

θ = θ+ ϵ
(θ)
t δt∇θ log πθ (At | St)

until St+1 is terminal

can be obtained using multi-step targets for the actor and critic, which can

either be implemented offline or using eligibility traces.



Chapter 3

Temporal Abstraction

Options (Sutton et al., 1999a) provide a framework for representing, planning

and learning with temporally abstraction actions. The option framework as-

sumes the existence of a base MDP on which are overlaid temporally abstract

actions called options. An option is a triple (Io, πo, βo) where I ⊆ S is an ini-

tiation set1, πo : S → Dist(A) is the policy of an option (which can also be

deterministic) and βo : S→ [0, 1] is a termination condition.

In the call-and-return model of option execution, a policy over options µ : S →
Dist(O) (deterministic if wanted) chooses an option among those which can be

initiated in a given state and executes the policy of that option until termina-

tion. Once the chosen option has terminated, the policy over options chooses

a new option and the process is repeated until the end of the episode.

For a more unified view, we now write π (a | s, o) =̇πo (a | s, o) and β(s, o)=̇βo(s).

This change of notation is meant to highlight the fact that the choice of prim-

itive actions by the option policies as well as the termination conditions are

functions of the state-option pairs. Indeed, we show formally in section 3.3

that the dynamics of the process induced by a set of options and a policy over

them can be viewed as an MDP over such state-option pairs. Another con-

sequence of writing πo and βo is that it leads the reader into thinking that an

agent must represent |O| entities separately. Using the notion of parameterized

options, we see in section 5.1 that this needs not be the case and that sharing of

parameters is in fact possible. This means for example that one could choose

1Initiation sets were part of the original definition in Sutton et al. (1999a) but have since
been removed in Sutton and Barto (2018).

53
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to represent the options policies under a single function taking as input a state

and an option and outputting a probability distribution over actions. Viewing

options through this lens opens the way towards better generalization using

more sample efficient representations of options.

Throughout this thesis, initiation sets are purposefully ignored by assuming

that every option can be initialized everywhere, that is: ∀o ∈ O, ∀s ∈ S :

s ∈ Io. The reason for this omission pertains to the difficulty in adapting the

policy gradient methodology to initiation sets rather than smooth functions.

We require in section 5.1 that all components of the system be randomized so

as to guarantee smoothness of the optimization objective. Thus going from

initiation sets to randomized entities would require rethinking the semantics

of the resulting system with respect to the original options framework. We

prefer to leave such conceptual changes for future work. However, we discuss

in section 5.5 how a generalization of initiation sets can readily be incorporated

within our existing framework when using a randomized policy over options.

3.1 Option Models

The combination of a set of options and base MDP leads to a semi-Markov

decision process (SMDP) (Howard, 1963; Puterman, 1994) in which the transi-

tion time between two decision points is a random variable. When considering

the induced process only at the level of state-option pairs, usual dynamic pro-

gramming results can be reused after a transformation to an equivalent MDP

(Puterman, 1994). For Markov Options – options which do not depend on the

history since initiation – this transformation can conveniently be expressed

either in closed-form or as the solution to evaluation equations over their mod-

els. The reward model for options b : S× O → R is a mapping from state-

option pairs to the expected discounted return until termination and satisfies

the equations:

b(s, o) = ∑
a

π (a | s, o)

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
(1− β(s′, o))b(s′, o)

)
. (3.1)
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Similarly, the transition model for options F : S×O× S→ R is an expectation

over the next state upon termination and is the solution to:

F(s, o, s′) = γ ∑
a

π (a | s, o) ∑̄
s

P (s̄ | s, a)
(
(1− β(s̄, o))F(s̄, o, s′) + β(s̄, o)1s′=s̄

)
.

(3.2)

Note that the reward and transition models are recursive expressions of the

same nature as the policy evaluation equations from section 2.1: they possess

a Bellman-like (Sutton et al., 1999a) structure. This means that any direct or it-

erative approach of the kind shown in section 2.1 could be used, in addition to

temporal difference learning methods. This perspective has been fully adopted

in the latest draft of the RL textbook by Sutton and Barto (2018) where option

models are presented as a special case (White, 2017) of the GVF framework

(Sutton et al., 2011; White, 2015). We also show in chapter 4 how these equa-

tions naturally emerge from a broader notion of multi-step models that we call

λ-models (section 4.3).

3.2 Evaluation Equations

The expected discounted return associated with a set of options O and a policy

over them can be expressed as:

QO(s, o)=̇E

[
∑
t=0

γtr(St, At)

⏐⏐⏐⏐⏐ S0 = s, O0 = o

]
= b(s, o) + ∑

s′
F(s, o, s′)∑

o′
µ
(
o′
⏐⏐ s′
)

QO(s′, o′) . (3.3)

Here b is treated identically as the instantaneous reward term in the usual

MDP formulation, effectively hiding the fact that it is the result of a tempo-

rally extended action. Because (3.3) describes the dynamics of the decision

process at the level of the policy over options, we refer to these equations as

the evaluation equations for options at the SMDP level.

A benefit of the options framework is that the stream of experience between

two decision steps of the SMDP level is accessible and can be utilized for learn-

ing. Expanding (3.1) and (3.2) inside (3.3), we obtain a new expression for the
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evaluation equations which we call the intra-option Bellman equations:

QO(s, o) = ∑
a

π (a | s, o)
(

r(s, a) + γ ∑
s′

P
(
s′
⏐⏐ s, a

)
UO(s′, o)

)
. (3.4)

The term UO(s′, o)=̇(1− β(s′, o))QO(s′, o) + β(s′, o)vO(s′) represents the utility

of persisting with the same option versus changing to a better one. Note that

the utility term can also be written as UO(s′, o) = QO(s′, o)− β(s′, o)AO(s′, o)

which leads to:

QO(s, o) = ∑
a

π (a | s, o)
(

r(s, a) + γ ∑
s′

P
(
s′
⏐⏐ s, a

) (
QO(s′, o)− β(s′, o)AO(s′, o)

))
,

(3.5)

where AO(s′, o)=̇QO(s′, o)− vO(s′) is the advantage function (Baird, 1993). This

form suggests an interpretation in which continuing with an option incurs

a cost β(s′, o)AO(s′, o). If an option is advantageous but likely to terminate

(higher value of β), a higher cost is incurred; if advantageous but persistent

(smaller value of β), the cost is less.

3.3 Augmented MDP

The intra-option Bellman equations can also be obtained when considering the

evolution a flat process over an augmented2 state space S̃=̇S ∪ O. This aug-

mentation is necessary to restore the Markov property which would otherwise

be lost – even with Markov options – when considering trajectories only over

states or state-action pairs (Sutton et al., 1999a). The transition probability

function P̃ of the Markov process over the augmented state space S̃ is then:

P̃
(
s̃′
⏐⏐ s̃, a

)
= P

(
s′
⏐⏐ s, a

) (
(1− β(s′, o))1o′=o + β(s′, o)µ

(
o′
⏐⏐ s′
))

. (3.6)

In this formulation, the MDP transition probability function P (· | s, a) is cou-

pled with the termination conditions and policy over options. Hence, if o = o′

it can either be that the current option has terminated and µ happened to have

picked the same option again, or that the current option has continued with

the same option. However, if o ̸= o′ it can only be, by the call-and-return

2The augmented MDP considered here is unrelated to the one from Roy (2003).
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execution model, that the current option has terminated and that µ chose a

different option. Another way to interpret this expression is to view the factor

P (o′ | s′, o) =̇(1− β(s′, o))1o′=o + β(s′, o)µ (o′ | s′) as a mixture policy (section

3.5) over options using µ (o′ | s′) in proportion β(s′, o) but persisting with the

same option when 1o′=o with probability 1− β(s′, o).

Equipped with a reward function r̃ : S̃ × A → R where r̃(s̃, a)=̇r(s, a), we

can define a discounted MDP over the augmented states M̃ = (S̃,A, P̃, r̃, γ).

Accordingly, the combination of a policy π̃ : S̃ → Dist(A) with M̃ induces

a Markov process over augmented states, actions and rewards. The expected

discounted return from an augmented state s̃ then follows the usual structure

of the evaluation equations in an MDP:

ṽπ̃(s̃) = ∑
a

π̃ (a | s̃)
(

r̃(s̃, a) + γ ∑
s̃′

P̃
(
s̃′
⏐⏐ s̃, a

)
ṽπ̃(s̃′)

)
(3.7)

As shown below, the intra-option Bellman equations (3.5) are recovered by

expanding the augmented transition probability function P̃, reward r̃ function

and policy π̃ inside (3.7):

ṽπ̃(s̃) = ∑
a

π (a | s, o)
(

r(s, a) + γ ∑
s′

P
(
s′
⏐⏐ s, a

) (
QO(s′, o) + β(s′, o)AO(s′, o)

) )
=̇QO(s, o) .

The solution to the evaluation equations over the augmented state space can

be written in matrix form with:

P̃π̃(s̃, s̃′) = ∑
a

π̃ (a | s̃) P̃
(
s̃′
⏐⏐ s̃, a

)
, and r̃π̃(s̃) = ∑

a
π̃ (a | s̃) r̃(s̃, a) ,

which then allows us to write the option-value function ṽ as:

ṽ=̇(I− γP̃π̃)
−1r̃π̃ =

∞

∑
t=0

(
γP̃π̃

)t
r̃π̃ . (3.8)

Similar to its MDP counterpart of section 2.3, a discounted weighting over aug-

mented states can also be defined as a function of a corresponding initial dis-

tribution α̃:

d⊤α̃ = α̃⊤
∞

∑
t=0

γP̃π̃ = α̃⊤(I− γP̃π̃)
−1 .
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The expected sum of discounted rewards under the initial distribution is then

given by d⊤α̃ r̃π.

3.4 Optimality Equations

When it comes to learning or planning with temporal abstraction, multiple

notions of optimality exist depending on which level of the model one is refer-

ring to and whether it is a local or global property. For example, the MAXQ

(Dietterich, 2000) framework is built around the idea of recursive optimality,

which is asking more than the simple notion of optimality at the SMDP level

assumed in the options framework. For a given set of options in an MDP, the

corresponding Bellman optimality equations for options are:

v⋆O(s)=̇ max
µ∈ΠMD

vµ(s) .

Just as it is the case with the usual optimality equations for MDPs (section 2.2),

the maximization on the right-hand side of the optimality equations for options

need not be carried directly in the space of deterministic policies. Instead, we

can leverage the componentwise partial order and write:

v⋆O(s) = max
o

Q⋆
O(s, o)

= max
o

(
b(s, o) + ∑

s′
F(s, o, s′)v⋆O(s

′)

)

= max
o

(
∑

a
π (a | s, o)

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
U⋆

O(s
′, o)

))
.

The solution to the optimality equations for options can be guaranteed to be

same as the one from the underlying MDP when the set of options is aug-

mented with primitive options (primitive actions in disguise). This also entails

that we should not expect to attain more expected return using options than

with primitive actions. The use of options should be to learn and plan faster:

not to gain more return. Although this fact can be understood intuitively,

a proof seems to be missing from the original options paper (Sutton et al.,

1999a). Proposition 3.1 offers a more detailed argument to support this fact.
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Proposition 3.1 (Planning with Primitive Options). Let v⋆ be the optimal value

function in an MDP, and v⋆O∪A the optimal value function given any set of options O

augmented with primitive options (one for each primitive actions):

v⋆ = v⋆O∪A .

Proof. The optimal value function at the SMDP level is such that for any sta-

tionary Markov policy over options µ:

v⋆O∪A ≥ vµ .

Note that any primitive policy (a policy over primitive actions only) can be

embedded within a policy over options. Hence the class of all primitive policies

is also contained within the set of all possible policies over options augmented

with primitives. So if the above statement holds for any µ in this larger class,

it must also hold for all primitive policies and v⋆O∪A ≥ v⋆.

In the other direction, we need to also establish that v⋆ ≥ v⋆O∪A. If it were

not the case, then it means that v⋆O∪A > v⋆ in one or more states. This can

only be the case if µ either chooses a primitive action whose value is different

from the one in v⋆, or it could also mean that µ takes a temporally extended

option leading to more return. Both situations are impossible as it would imply

loosing the principle of optimality which v⋆ depends upon.

If the MDP is known and can fit in memory, we could solve for the optimal-

ity equations for options using either policy iteration or value iteration. This

would require the options models to be obtained either by solving their corre-

sponding evaluation problem in closed-form or using iterative methods. Value

iteration can then be applied over option models by adopting the operator

perspective on equations (3.3) at the SMDP level. Alternatively, we could use

the evaluation equations (3.5) at the intra level without having to form models

apriori (given that the options are Markov). At this level, the Bellman optimal-

ity equations are:

v⋆O(s) = max
o

Q⋆
O(s, o)

= max
o ∑

a
π (a | s, o)

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
U⋆

O(s
′, o)

)
.
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where U⋆
O(s
′, o)=̇(1− β(s′, o))Q⋆

O(s
′, o)+ β(s′, o)v⋆O(s

′). The intra-option Q-learning

algorithm (Sutton et al., 1999a), a model-free method, follows directly from

these equations and uses the following sequence of iterates:

G(1)
t = Rt+1 + γ

(
(1− β(St+1, Ot))Qt(St+1, Ot)− β(St+1, Ot)max

o
Qt(St+1, o)

)
Qt+1(St, Ot) = Qt(St, Ot) + ϵt

(
G(1)

t −Qt(St, Ot)
)

.

In online and incremental RL algorithms (Sutton, 1988; Sutton and Barto, 2018),

experience needs to be assimilated as fast as possible, ideally without having to

wait longer than the next step. Intra-Option Q-learning embodies this philoso-

phy in the same way that TD(λ) with eligibility traces allows us to implement

the acausal forward view of the λ-return. Intra-option Q-learning achieves this

online goal while its Q-learning counterpart at the SMDP level must wait un-

til termination before making an update. The SMDP Q-learning (Bradtke and

Duff, 1995; Sutton et al., 1999a) originates from the optimality equation at the

SMDP level, but instead of computing option models, it samples through them:

G(N)
t =

(
N−1

∑
n=t

γn−t

)
+ γN max

o
Qt(St+K , o)

Qt+1(St, Ot) = Qt(St, Ot) + ϵt

(
G(N)

t −Qt(St, Ot)
)

.

Another way to think of SMDP Q-learning is as a form of n-steps Q-learning

where the number of steps is a random variable corresponding to the number

of steps that the option has taken until termination.

3.5 Mixture Distribution

The evaluation equations for Markov options admits a third form that involves

only a single QO term on the right-hand side rather than a pair QO and vO:

QO(s, o) = ∑
a

π (a | s, o)
(

r(s, a) + γ ∑
s′

P
(
s′
⏐⏐ s, a

)
∑
o′

P
(
o′
⏐⏐ s, o

)
QO(s′, o)

)
,

(3.9)

where P (o′ | s, o) = (1− β(s′, o))1s′=s + β(s′, o)µ (o′ | s′). Written in this way,

we see that the evaluation equations for Markov options involve a mixture
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distribution over two mixture components: a degenerate distribution 1o′=o and

the policy over options µ itself which is a categorical distribution.

Two approaches are possible when it comes to sampling from the distribution

P (o′ | s, o): either we compute the distribution explicitly, then use the inverse

transform sampling (Devroye, 1986) method, or we use a two-steps process

where we first pick a mixture component, then sample from it. The second

approach is how the call-and-return model is typically implemented: at every

step, we sample from the termination condition, keeping the same option if

the outcome is “continue” or sampling a new option according to µ if the out-

come is “terminate”. The alternative where the probability distribution over

next options is computed explicitly bears a slightly different semantics: termi-

nation is now implicit because the termination events are no longer sampled

explicitly (two implement the two-steps sampling approach). It is possible that

this implicit variant may provide some practical variance reduction benefits in

practice. In fact, we may think of this approach as an expected form of the

two-steps counterpart, the same way that we have expected SARSA (John, 1994;

Sutton and Barto, 1998; van Seijen et al., 2009; Sutton and Barto, 2018) as a

variance-reduced counterpart to SARSA (Rummery and Niranjan, 1994). The

statistical mechanism at play here is the conditioning (Rubinstein, 1981) strategy

for variance reduction.

3.6 Distributed Representations

Interesting extensions to the options framework may be obtained by using

richer distributions than the categorical case. In fact, learning with discrete

options the way we currently do is amenable to learning with local representa-

tions (Hinton et al., 1986). That is, every discrete option is treated as a separate

entity representing a fixed behavior and its duration. While this kind of rep-

resentation tends to be easier to interpret, it does a poor job at representing

knowledge compactly and may require more samples than a distributed repre-

sentations.
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In chapter 5.3, we propose a learning architecture where options have param-

eters that are learned in a policy gradient setting. The formulation is gen-

eral enough to account for possible parameter sharing between various com-

ponents of the system: policy over options, option policies and termination

conditions. This form of parameter sharing is one mechanism by which gener-

alization abilities and sample efficiency can be improved. The proposed shift

to a more distributed representation for options would be another mechanism,

distinct from parameter sharing, to improve generalization.

To better imagine what such distributed representation for options may look

like, it is useful to view the mixture distribution P (o′ | s′, o) as a distribution

over one-hot/one-of-k (Bishop, 2006) vectors instead of integer categories. For

example, the identity of option i out of |O| options can be represented by the

vector ei ∈ R|O|, ei(s) = 1s=i, a vector of zeros except for its i-th element set

to 1. In this case, a natural distributed extension to the one-hot representation

would be to use binary strings {0, 1}k with the policy over options µ as a

multivariate Bernoulli distribution.

Under this representation, the presence (or absence) of a single bit may not

fully signal the identity of a chosen option; it would rather be recovered by

the overall pattern of activation (the particular configuration of ones and zeros).

The meaning of individual bits in this representation remains to be properly

defined, but the general idea is that they would capture different aspects of

the behavior that the learning system is currently trying to produce. The si-

multaneous presence of certain bits, for example, may correspond to different

properties that the system ought to see (predict) as a consequence of acting

in the environment. This interpretation has much in common with the recent

proposal put forward by Sutton (2016) and his subgoal keyboard: the repre-

sentation of options-like abstractions by a weighted combination of subgoals

or intentions. While distributions over binary strings are natural extensions,

a distributed representation over real-valued vectors is also conceivable and

would perhaps makes graded responses easier to express. We could for exam-

ple choose to represent the policy over options as a normal distribution over

real-valued vectors o ∈ Rk with mean and standard deviation as a function of

the state.

In order to maintain the semantics of the call-and-return execution model,

it would be crucial to replicate the same biasing mechanism provided by the
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degenerate mixture component 1o′=o in (3.9). That is, we would need the dis-

tribution over next option vectors to be more likely to samples similar option

vectors as the previous ones if the probability of continuing is high. This view

implies that commitment to an option could be a function not only of the termi-

nation condition, but also of the width of some kernel (a bump) centered on the

previous option vector. The indicator function of the degenerate component

in (3.9) would therefore be replaced by a smooth counterpart, where similarity

would not be established as a hard equality of the form o′ = o but rather as

a function of closeness in Euclidean distance to the center of that kernel. If the

distribution over option vectors is binary, it would be more suitable to use a

distance metric such as the Hamming distance (MacKay, 2002).

3.7 Related Contemporary Frameworks

The options framework was designed to be as simple as possible without com-

promising on its generality. Hence, it makes no assumption on the kind of

state abstraction, policy representation, learning algorithm or network archi-

tectures. Yet, we have argued in section 3.5 that the framework may gain even

more generality and expressivity through a distributional shift : viewing the

identity of an option as property of the pattern of activation in its vector-valued

representation.

In the following, we view two recent proposals through the lens of options and

show how they leverage a similar idea: Feudal Network by Vezhnevets et al.

(2017) and Adaptive Skills Adaptive Partitions by Mankowitz et al. (2016). We

also review earlier work by Levy and Shimkin (2012) proposing a gradient-

based approach similar to Mankowitz et al. (2016) and the one presented in

this thesis (option-critic).

3.7.1 Augmented Hierarchical Policy (AHP)

Our previous construction of the MDP M̃ in section 3.3 is based on the idea of

augmenting the state with the current option while preserving the original set

of actions. Under this perspective, the choice of option with µ and the termi-

nation events with β are hidden within the transition probability function P̃.
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The alternative put forward in Levy and Shimkin (2012) consists in specifying

the choice of primitive action, whether to terminate, and which option to pick

next as a single policy which they call an Augmented Hierarchical Policy (AHP).

An action in this case is a triple Ãt=̇(At, Kt, Ot+1), Ãt ∈ Ã=̇A ∪K ∪ O where

Kt ∈ K=̇{♯, ♭} is a random variable for the event of continuing (♯) or termi-

nating (♭) at time t. It can then be shown (Levy and Shimkin, 2012, after some

simplification to their equation 14) that the policy π̄ over S̃ and Ã is:

π̄ (ãt | s̃t) = π (at | st, ot)
(
(1− β(st, ot))1kt=♯1ot+1=ot + β(st, ot)µ (ot+1 | st)1kt=♭

)
.

Here the termination conditions and policy over option policy are coupled

inside the policy π̄ as opposed to section 3.3 where they were absorbed within

transition probability function P̃. With the transition probability function:

P̄ (s̃t+1 | s̃t, ãt) =̇P (st+1 | , st, at)1ot+1=ot ,

and reward function:

r̄(s̃t, ãt) = r(st, at) ,

we can also show that this formulation leads to the intra-option Bellman equa-

tions:

v̄π̄(s̃) = ∑
ã′

π̄ (ã | s̃)
(

r̄(s̃, ã) + ∑
s̃′

P̄
(
s̃′
⏐⏐ s̃, ã

)
v̄π̄(s̃′)

)
= ∑

a
π (a | s, o)

(
r(s, a)+

∑
s′

P
(
s′
⏐⏐ , s, a

)
∑
k,o′

(
(1− β(s, o))1k=♯1o′=o + β(s, o)µ

(
o′
⏐⏐ s
)
1k=♭

)
v̄π̄(s̃′)

)
= QO(s, o)

This connection to the intra-option Bellman equations had not been recognized

by Levy and Shimkin (2012). Hence, their proposed learning method had to

rely to the explicit AHP representation of π̄ which made the corresponding

gradients more opaque. The approach that we put forward in chapter 5 is

based instead on the construction of section 3.3 and has the advantage of ex-

posing the underlying gradients directly. The raw form of our equations allows
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for various algorithmic improvements regarding variance reduction methods

and decoupling of the updates.

3.7.2 Adaptive Skills Adaptive Partitions (ASAP)

The ASAP framework of Mankowitz et al. (2016) is also related to the idea of

representing options as binary vectors described in section 3.5. Despite not be-

ing cast explicitly in the options framework, the notion of skill in ASAP closely

matches that of an option. The policy over such skills (the policy over options)

is of a specific kind, namely that of a multivariate Bernoulli distribution where

each component is independent. The probability of selecting a particular op-

tion is then µ (o | s) = ∏k
i=0 P (o(i) | s) where o(i) is the i-th component of the

option vector o, and P (o(i) | s) may be expressed in tabular form, or using

function approximation (as the authors did). The authors view this binary op-

tion vector as a partitioning of the state space arising from the intersection of

hyperplanes that each vector component specifies.

As in Feudal Networks Vezhnevets et al. (2017), ASAP has no explicit termina-

tion conditions and interprets a transition out of a partition as the termination

of the option associated with it. Because it does not implement the call-and-

return model, the boundaries between the partitions are smooth. It is as if

the process would terminate, initiate and sample a new skills at every step,

irrespective of the identity of the previous option. ASAP raises some interest-

ing questions and potential research avenues regarding the interplay of state

abstraction with temporal abstraction. Under which circumstances is it prefer-

able to think of temporal abstraction as an induced property of specific state

abstraction ? Are there specific kinds of state abstractions giving rise to tem-

poral abstraction under the exact call-and-return semantics ?

3.7.3 Feudal Networks (FuN)

FuN (Vezhnevets et al., 2017) is a neural network architecture inspired by ear-

lier work on Feudal Reinforcement Learning from Dayan and Hinton (1992). As

in the options framework, FuN distinguishes between a high level manager

and a low-level worker mirroring the structure of the options framework with
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its policy over options and the options below. Due to architectural and algo-

rithmic choices, the manager implicitly implements a Von Mises–Fisher distri-

bution, a distribution over periodic random variables (MacKay, 2002). Viewed

through the lens of the proposal put forward in section 3.5, this is as if option

vectors would now be unit vectors representing directions on the unit hyper-

sphere. The Von Mises-Fisher distribution being a wrapped analogue to the

usual Gaussian distribution, it also has a dispersion parameter controlling the

spread around a mean direction vector, the distance to which is measured by

the cosine distance. In practice, this dispersion constant is not represented ex-

plicitly but rather appears implicitly depending on the ability of the workers

to achieve the goal specified by the manager.

Temporal commitment to a certain behavior is also implicit in FuN because

termination conditions are not part of the model. However, a similar effect is

achieved indirectly through dilated LSTMs (Yu and Koltun, 2016), whose net

effect is to decouple the update schedules for the manager and the worker.

This is similar to the options framework and the distinctions between the de-

cision stages at the SMDP levels, and those taking place at the natural level

(Puterman, 1994) within the options themselves. Note that in section 5.1, we

show that the policy gradient for the policy over options sees the termination

function appearing as a multiplication factor which attenuates the gradient

updates when the probability of continuing is high. The net effect is also to

spread out (to tick at a slower rate) the updates for the policy over options from

those of the options. In our problem setting, the timescale of those updates is

learned, by virtue of learning termination conditions, instead of being fixed in

advance.



Chapter 4

Unifying Multi-Step Methods

In section 3.4, we suggested that options may have something in common

with multi-step temporal difference learning. Indeed, we have seen that the

SMDP Q-learning algorithm can be understood as a special case of TD learn-

ing with n-step returns targets, where n is randomly distributed according

to the number of steps that an option lasts. Furthermore, the form of the

λ-return developed in section 2.1.2.1 shows a striking resemblance with the

expression derived in lemma 2.1 linking the expected discount sum of rewards

to an equivalent undiscounted random-horizon formulation. In this chapter,

we show that these similarities are not a coincidence but rather the manifes-

tation of a common structure which we explain using matrix splitting theory

(Varga, 1962; Young and Rheinboldt, 1971; Puterman, 1994).

The starting point of our endeavour is a generalization of the evaluation equa-

tions which separates the sum of discounted rewards up to a certain stopping

time from the value onward. This form has much in common with the idea

of bootstrapping in reinforcement learning where we make an estimate of the

return using a sum of sampled rewards, plus an approximation of the value

on the last sampled state. We develop this connection by first studying the

dynamic programming setting, and then later consider the projected variant in

the context of linear function approximation.

67



Multi-Step Models 68

4.1 n-step models

In section 2.1, we have seen that the policy evaluation equations can be written

in matrix form as:

vπ = rπ + γPπvπ .

This linear system is a statement regarding what the value function of a policy

should satisfy: it should be such that applying the linear transformation on

the right-hand side once more to vπ give us back vπ. A natural question to

then ask is whether there exist generalizations of that same statement which

can also characterize vπ. An obvious answer to that question simply comes

from expanding vπ on the right-hand side of the evaluations equations to get:

vπ = rπ + γPπrπ + γ2P2
πvπ .

Hence, if vπ satisfies the usual policy evaluation equations, it also satisfies

the above two-steps equations. That is, if we project the value function two

steps ahead (γ2P2
πvπ) and add the expected reward over two steps, we get

back vπ. At this point, it is convenient to gather the terms arising from the

expansion of the evaluation equations on the right-hand side and call them

models: a two-steps reward model b(2)
π =̇rπ + γPπrπ and a two-steps transition

model F(2)
π =̇γ2P2

π. More generally, expanding the right-hand side of the policy

evaluation equations n times gives us n-step models.

Definition 4.1 (n-step models). An n-step reward model for a policy π in an

MDP is:

b(n)
π =̇

n−1

∑
t=0

(γPπ)
trπ ,

and its n-step transition model is:

F(n)
π =̇(γPπ)

n .

An important property of n-step models is that they can be substituted into

the policy evaluation equations without impacting the existence or uniqueness

of the underlying value function vπ. That is, vπ still holds under the n-step
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policy evaluation equations:

vπ =
n−1

∑
t=0

(γPπ)
trπ + (γPπ)

nvπ . (4.1)

Lemma 4.2. The solution vπ to the one-step policy evaluation equations is also the

solution to the n-step equations:

vπ = (I− γPπ)
−1 rπ =

(
I− F(n)

π

)−1
b(n)

π .

Proof. If vπ is the solution to the one-step policy evaluation equations, then we

know that (I− γPπ)vπ = rπ and we can write:(
I− F(n)

π

)
v = b(n)

π

=

(
n−1

∑
k=0

(γPπ)
k

)
rπ

=

(
n−1

∑
k=0

(γPπ)
k

)
(I− γPπ) vπ .

We establish that vπ = v after having recognized that:(
n−1

∑
k=0

(γPπ)
k

)
(I− γPπ) =

(
n−1

∑
k=0

(γPπ)
k

)
−
(

n

∑
k=1

(γPπ)
k

)
= I− γnPn

π

= I− F(n)
π .

Instead of writing the n-step evaluation equations in matrix form, we can also

write them more explicitly as an expectation:

vπ(s) = E

[
n−1

∑
t=0

γtr(St, At) + γnvπ(Sn)

⏐⏐⏐⏐⏐ S0 = s

]
.

In this expression, St, At and St+1 denote random variables while n is a given

constant. This raises the question: would there be evaluation equations where

n is random variable ? The answer to that question was developed extensively
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by van Nunen and Wessels (1976a); van Nunen (1976); Wessels (1977) through

their notion of stopping time.

4.2 Generalized Policy Evaluation Equations

The form of the policy evaluation equations for the general case where the

number of steps is random is:

vπ(s)=̇E

[
N−1

∑
t=0

γtr(St, At) + γNvπ(SN)|S0 = s

]
, (4.2)

and N is now a random variable denoting the number of steps up to a certain

stopping time. van Nunen and Wessels (1976a) developed the theory for the

general case where n can be history dependent (in which case stationary poli-

cies may not exist). In this chapter, we restrict our attention to the Markov case

where N can only be a function of a Markov stopping time function.

To understand the process by which N is realized, it is useful (Shwartz, 2001)

to extend the state space to indicate whether the unrolling of the sum ∑N−1
t=0

in (4.2) continues or not. Therefore, we consider trajectories of the form (S×
{♯, ♭})∞ where ♯ denotes the event continue and ♭ means terminate. The proba-

bility associated to the event ♯ (continue) is given by a function λ : S → [0, 1]

and similarly, P (♭ | St) = 1− λ(St) is the probability of terminating in state St.

Our choice of notation is deliberate: the use of the symbol λ is meant to unify

a variety of multi-step methods, including those based on the λ-return. In the

following, we refer to the function λ as a termination function to streamline our

terminology with that of van Nunen and Wessels (1976a); Sutton et al. (1999a)

– although continuation function would be a more appropriate term.

In order to appropriately describe the augmented Markov process, we need to

express the probability of transitioning to the next state and continuing upon

entering it. In an MDP with policy π (without options, for the moment), we

define the matrix Pπ,♯ containing that information as follows:

Pπ,♯(s, s′)=̇∑
a

π (a|s) P
(
s′|s, a

)
λ(s, s′) = Pπ(s, s′)λ(s, s′) .
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The generalized policy evaluation equations (4.2) can then be written in matrix

form as:

vπ =

(
∞

∑
t=0

(
γPπ,♯

)t rπ

)
+

∞

∑
t=0

(
γPπ,♯

)t (
γPπ − γPπ,♯

)
vπ . (4.3)

Note that in this expression, the difference γPπ − γPπ,♯ represents the proba-

bility of transitioning and terminating upon entering the next state. The first

term involving the reward vector rπ is the expected sum of discounted rewards

before termination, while the second term is the expectation of the value vector

vπ upon termination.

4.3 λ-models

The equations described in (4.3) look very similar to the n-step evaluation

equations obtained earlier in (4.1). This is because equations (4.3) are simply a

smooth version of their n-step counterparts: smooth in the sense that they do

not involve a hard cutoff on the number of steps. Such models were studied by

Sutton (1995) who called them beta-models. For more cohesion with the rest of

this chapter, we refer to them instead as “λ-models.”

Definition 4.3 (λ-models). Given a discounted MDP and stationary policy π,

a λ-reward model is defined as:

b(λ)
π =̇

∞

∑
t=0

(
γPπ,♯

)t rπ .

Furthermore, we define a λ-transition model as:

F(λ)
π =̇

∞

∑
t=0

(
γPπ,♯

)t (
γPπ − γPπ,♯

)
.

The generalized policy evaluation equations over the λ-models are then:

vπ = b(λ)
π + F(λ)

π vπ . (4.4)

Given λ-models, the generalized policy evaluation equations can be solved

using the two usual main approaches : in a direct fashion via matrix inversion,
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or in an iterative fashion by switching to the operator viewpoint. This now

leaves us with the problem of obtaining the models in first place.

Recognizing the familiar form of the Neumann series in definition 4.3, we now

establish evaluation equations for the models themselves.

Proposition 4.4. Given any termination function λ : S× S→ [0, 1], if

ρ(γPπ,♯) < 1 ,

the λ-models exist and satisfy:

b(λ)
π =

∞

∑
t=0

(
γPπ,♯

)t rπ =
(
I− γPπ,♯

)−1 rπ

F(λ)
π =

∞

∑
t=0

(
γPπ,♯

)t (
γPπ − γPπ,♯

)
=
(
I− γPπ,♯

)−1 (
γPπ − γPπ,♯

)
.

Proof. This result follows directly from the fact that we have a Neumman series,

whose convergence is determined by the spectral radius of the corresponding

matrix. See (Puterman, 1994, corollary C.4) for a proof, as a well as section 2.1

for the usual policy evaluation equations.

Proposition 4.4 suggests that given an MDP and a policy π, the correspond-

ing λ-models can be computed directly via matrix inversion. As usual, it is

preferable (for numerical stability) to solve for the vector b in

(
I− γPπ,♯

)
b = rπ ,

to get the λ-reward model b(λ)
π and similarly, to solve for F in

(
I− γPπ,♯

)
F = γPπ − γPπ,♯ ,

to get the λ-transition model F(λ)
π .

An iterative approach for computing the λ-models can also be obtained by

writing them in a recursive form (as Bellman equations as we would often say

informally). For the λ-reward model, this would correspond to :

b(λ)
π = rπ + γPπ,♯b

(λ)
π ,
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or in component form :

b(λ)
π (s) = ∑

a
π (a | s)

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
λ(s, s′)b(λ)

π (s′)

)
. (4.5)

As for the λ-transition model, its corresponding recursive expression is:

F(λ)
π =

(
γPπ − γPπ,♯

)
+ γPπ,♯F

(λ)
π .

The structure of this equation is perhaps clearer when writing it in component

form for a pair (s, s′) of Fπ:

F(λ)
π (s, s′) (4.6)

= γ ∑
a

π (a | s)
(

P
(
s′
⏐⏐ s, a

)
(1− λ(s, s′)) + ∑̄

s
P (s̄ | s, a) λ(s, s̄)F(λ)

π (s̄, s′)

)
(4.7)

= γ ∑
a

π (a | s) ∑̄
s

P (s̄ | s, a)
(
(1− λ(s, s̄))1s̄=s′ + λ(s, s̄)F(λ)

π (s̄, s′)
)

. (4.8)

With these recursive equations in place, we finish our tour of the evalua-

tion equations by recognizing that λ-models are just General Value Functions

(GVFs) (Sutton et al., 2011). In fact, another way to write a λ-reward model is:

b(λ)
π (s) = E

[
r(S0, A0) + γλ(S0, S1)b

(λ)
π (S1)

⏐⏐⏐ S0 = s
]

= E
[
r(S0, A0) + γλ(S0, S1)

(
r(S1, A1) + γλ(S1, S2)b

(λ)
π (S2)

) ⏐⏐⏐ S0 = s
]

= E

[
∞

∑
t=0

r(St, At)
t−1

∏
k=0

γλ(Sk, Sk+1)

⏐⏐⏐⏐⏐ S0 = s

]
,

with the convention that ∏
j
i = 1 for j < i. Using the GVF terminology, the

“reward” term is called a cumulant and γλ is its corresponding termination

function. Note that b(λ)
π is nothing more than the value function for the policy

π in an MDP where the discount factor (or its random horizon) is given by γλ :

a generalization of the result shown in lemma 2.1. Using the same reasoning,

F(λ)
π simply corresponds to the Successor Representation (SR) (section 2.3.1)

under an MDP whose discount factor is γλ. This means that the λ-transition
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model can also be written as :

F(λ)
π (s, s′) = E

[
γ(1− λ(S0, S1))1S1=s′ + γλ(S0, S1)F

(λ)
π (S1, s′)

⏐⏐⏐ S0 = s
]

= E

[
∞

∑
t=0

γ(1− λ(St, St+1))1St+1=s′
t−1

∏
k=0

γλ(Sk, Sk+1)|S0 = s

]
. (4.9)

The term γ(1− λ(St, St+1))1St+1=s′ here plays the role of what would be the

reward function in the usual policy evaluation equations. It would also be called

the cumulant of the corresponding GVF with the same termination function γλ

as in the GVF representation of the λ-reward model. While we choose to write

(4.9) in component form for each (s, s′) pairs, it does not mean that we have

to allocate one GVF deamon per s′ (column). In fact, the same comment that

we made for the SR in section 2.3.1 applies also here: nothing prevents us

from using vector-valued rewards/cumulant. This is because the existence of

a solution to the evaluation equations depends only on the properties of the

matrix γPπ,♯, and as long as the “rewards” are bounded: whether we have a

vector or matrix “reward” term on the right-hand side of proposition 4.4 is

irrelevant.

4.4 Matrix Splitting

We now go back to the generalized policy evaluation equations (4.3) but write

them in terms of the closed-form solutions for the λ-models:

vπ =
(
I− γPπ,♯

)−1 rπ +
(
I− γPπ,♯

)−1 (
γPπ − γPπ,♯

)
vπ .

Let us also rename some matrices in this equations for more clarity, namely :

Mπ,♯=̇I− γPπ,♯ and Nπ,♭=̇γPπ − γPπ,♯ .

The generalized policy evaluations (4.3) then become:

vπ = M−1
π,♯rπ + M−1

π,♯Nπ,♭vπ .
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A key observation to make is that Mπ,♯ and Nπ,♭ are related in a specific way:

Mπ,♯ −Nπ,♭ = I− γPπ .

It turns out that this representation of I − γPπ as a difference of two other

matrices corresponds to the notion of matrix splitting extensively developed

by Varga (1960, 1962) but originating from Keller (1958) 1. Matrix splitting

methods were initially devised as a way to speed up iterative solvers for partial

differential equations. The scope of this approach was then extended to general

linear systems of equations in the seminal textbook on iterative methods by

Varga (1962). Porteus (1975) then used Varga’s results on the convergence

rate of matrix splitting methods to motivate the usefulness of his pre-inverse

transform for solutions to MDPs.

Let us take a moment to contemplate how we got here. Going back to the

beginning of this chapter, we started with a generalization of the policy evalu-

ation equations based on the notion of stopping time. We then derived a ma-

trix representation of those equations, and showed that they can be described

using what we called λ-models. These λ-models were then shown to have

evaluation equations (Bellman equations) of their own and it is when we wrote

their closed-form solution in the generalized policy evaluations equations that

we found a matrix splitting. But why should we care about these generalized

equations in the first place ? The matrix splitting perspective is clear on that

account : to speed up our solution methods. At this point, the answer as to

why this should be the case may not be surprising since the generalized policy

evaluation equations are of the form:

vπ = b(λ)
π + F(λ)

π vπ ,

and we know that the rate of convergence of the corresponding sequence of

iterates:

vk+1 = b(λ)
π + F(λ)

π vk , (4.10)

depends on the spectral radius ρ(F(λ)
π ) = ρ(M−1

π,♯Nπ,♭). For example, con-

sider one extreme with λ(s, s′) = 1 ∀s, s′ ∈ S such that the augmented process

(over states and termination events) of section 4.2 continues everywhere. The
1According to Varga (1960)
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sequence (4.10) corresponding to λ(s, s′) = 1 is then:

vk+1 = (I− γPπ)
−1 rπ = vπ . (4.11)

This means that in a single step, the corresponding iterative solver would have

already computed the solution vπ (note vk does not even appear on the right-

hand side of (4.11)). From a practical point of view, it may not be advantageous

to go this far along the spectrum induced by λ because forming the λ-models

would be just as hard as solving the original problem in the first place. On the

other hand, if λ(s, s′) = 0 ∀s, s′ ∈ S the resulting iterations are:

vk+1 = rπ + γPπvk

and we are back to the usual one-step policy evaluation equations (2.2) without

having gained any speedup.

It is clear from the previous examples that the extremes points (where λ con-

tinues everywhere or when it terminates everywhere) preserve vπ as the final

answer of our policy evaluation algorithms: a consistency property (Young and

Rheinboldt, 1971). In the following, we provide a λ counterpart to lemma 4.2,

previously introduced for the n-step case.

Lemma 4.5 (Consistency). The value function vπ of policy π in the given MDP is

the unique solution to the generalized policy evaluation equations for any termination

function λ : S× S → [0, 1] and γ ∈ [0, 1). In other words, v = vπ is the unique

solution to the following linear system :(
I− F(λ)

π

)
v = b(λ)

π .

Proof. Using the matrix splitting notation:(
I−M−1

π,♯Nπ,♭

)
v = M−1

π,♯rπ .

Multiplying by Mπ,♯ on both sides:

(
Mπ,♯ −Nπ,♭

)
v = rπ .
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Because Mπ,♯−Nπ,♭ is matrix splitting for I− γPπ, the last equation simplifies

to:

(I− γPπ) v = rπ ,

whose solution is vπ.

Using a similar matrix splitting argument, we can also establish the consistency

properties of our generalized Bellman operator in the control case.

Lemma 4.6 (Consistency in the control case). The generalized Bellman optimality

equations are consistent with the optimal value function v⋆:

v⋆ = max
π∈ΠMD

(
b(λ)

π + F(λ)
π vπ

)
.

Proof. The optimal value function is such that for any policy π, v⋆ ≥ vπ. Us-

ing the closed-form expression for generalized policy evaluation equations, it

follows that:

v⋆ ≥
(

I− γF(λ)
π

)−1
b(λ)

π

=
(

M−1
π,♯

(
Mπ,♯ −Nπ,♭

))−1
M−1

π,♯rπ

= (I− γPπ)
−1 rπ

= vπ .

Historically, the development of matrix splitting methods for iterative solvers

came jointly with the idea of matrix preconditioning. In fact, any matrix split-

ting specifies a choice of preconditioner (Chen, 2005), namely the matrix Mπ,♯

itself. Instead of solving linear systems by an iterative successive approxi-

mation approach, matrix preconditioning methods are often based on more

direct methods. The matrix preconditioner is then be applied (most of the time

pre-multiplied) apriori to the coefficient matrix to obtain a transformed linear

system of equations which hopefully is easier to solve directly. The precon-

ditioning form corresponding to generalized policy evaluation equations and
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their matrix splitting is : (
I−M−1

π,♯Nπ,♭

)
vπ = M−1

π,♯rπ

⇐⇒M−1
π,♯ (I− γPπ) vπ = M−1

π,♯rπ (4.12)

We see here that M−1
π,♯ pre-multiplies I − γPπ which is the coefficient matrix

appearing in the basic policy evaluation equations (2.2). To understand how

the resulting linear system of equations can be easier to solve, consider the

extreme case where λ(s, s′) = 1 ∀s, s′ ∈ S thereby continuing everywhere. The

left-hand side of (4.12) is then M−1
π,♯ (I− γPπ) = I and the solution to the lin-

ear system of equation can be read from the right-hand side of the equation

M−1
π,♯rπ = (I− γPπ) rπ = vπ. This choice of preconditioner is not very interest-

ing because forming it is at least as expensive as solving the original problem

in the first place. In general, the design of a good matrix preconditioner (or

equivalent of a matrix splitting) must find a balance between the computational

cost for obtaining it versus the effort involved in solving the original problem

(Golub and Van Loan, 1996). An effective way to reduce the computational ex-

pense associated with the construction of a preconditioner is to amortize its cost

over many different problems (Golub and Van Loan, 1996; Hackbusch, 2016):

ie. for many different right-hand sides (reward vector in our case) but for the

same coefficient matrix (the same transition matrix). We made a similar point

regarding the usefulness of the successor representation in chapter 2.3, which

as we will see in the next section, corresponds to the extreme case λ = 1. A

similar case can also be made in favor of constructing good options, which also

admit a matrix splitting/preconditioning form.

4.5 Generalized Projected Evaluation Equations

Generalized policy evaluation equations can also be defined in the context

of linear function approximation. As in section 2.1.2.2, we assume that we

are given a feature matrix Φ ∈ RS×k with the goal of finding a parameter

vector w ∈ Rk such that v̂π=̇Φw is as close as possible to the true vπ. Using

our previous notation, we have a projection operator Π=̇Φ
(
Φ⊤ΞΦ

)−1
Φ⊤Ξ,

where Ξ ∈ RS×S is a diagonal matrix containing the stationary distribution dπ.
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Definition 4.7. The Generalized Projected policy evaluation equations are :

Φw = Π
(

b(λ)
π + F(λ)

π Φw
)

. (4.13)

The projected equations given in the above definition can be re-arranged as an

equivalent linear system of equations whose unknown variables are the param-

eters w.

Lemma 4.8. The solution w to the generalized projected policy evaluation equations

satisfies the following linear system:(
Φ⊤ΞM−1

π,♯ (I− γPπ)Φ
)

w = Φ⊤ΞM−1
π,♯rπ . (4.14)

Proof. Multiplying by Φ⊤Ξ on both sides of (4.13), we get:

Φ⊤ΞΦw = Φ⊤Ξb(λ)
π + Φ⊤ΞF(λ)

π Φw(
Φ⊤Ξ

(
I− F(λ)

π

)
Φ
)

w = Φ⊤Ξb(λ)
π(

Φ⊤Ξ
(

I−M−1
π,♯Nπ,♭

)
Φ
)

w = Φ⊤ΞM−1
π,♯rπ

We then use the fact that we have a matrix splitting:

I−M−1
π,♯Nπ,♭ = I−M−1

π,♯

(
Mπ,♯ − (I− γPπ)

)
= M−1

π,♯ (I− γPπ) ,

which leads us to the desired result:(
Φ⊤ΞM−1

π,♯ (I− γPπ)Φ
)

w = Φ⊤ΞM−1
π,♯rπ .

To show that the generalized projected equations have a solution, we could

use the same strategy as in section 2.1.2.2 by first establishing the contraction

property for the generalized policy evaluation operator in combination with

the fact that Φ is a nonexpansion. Another common approach (Sutton, 1988;

Tsitsiklis and Roy, 1997a; Sutton, 2015b; Sutton and Barto, 2018) based on the

ODE perspective (Benveniste et al., 1990; Kushner and Yin, 2003) is to establish

that the key matrix (Sutton, 1988) A=̇Φ⊤ΞM−1
π,♯ (I− γPπ)Φ in (4.14) is positive

definite. However, in general A need not be positive definite for arbitrary
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matrix splitting. For example, we have shown in Touati et al. (2018) that the

matrix splitting corresponding to the multi-step TD method algorithm called

tree-backup (Precup et al., 2000) does not satisfy this constraint.

4.6 Matrix Splitting for Options

In light of section 4.3, option models can simply be seen as a specific kind of

λ-models. In fact, we saw in section 3.1 that option models can be written as:

b(β)
π,o(s) = ∑

a
π (a | s, o)

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
(1− β(s′, o))b(β)

π,o(s′)

)

for the reward model b(β)
π,o of option o and:

F(β)
π,o(s, s′) = γ ∑

a
π (a | s, o) ∑̄

s
P (s̄ | s, a)

(
β(s̄, o)1s′=s̄ + (1− β(s̄, o))F(β)

π,o(s̄, s′)
)

,

for its transition model. These equations are exactly the ones found in section

(4.5) and (4.8) but where we replace π by πo, and (1− λ(s, s′)) by β(s′, o). It

then follows through proposition 4.4 that the closed-form expression for the

reward model of an option is:

b(β)
π,o =

(
I− γPπ,o,♯

)−1 rπ,o ,

where we define rπ,o ∈ R|S| and Pπ,o,♯ ∈ R|S|×|S| as:

rπ,o(s)=̇∑
a

π (a | s, o) r(s, a), Pπ,o,♯=̇∑
a

π (a | s, o) P
(
s′
⏐⏐ s, a

) (
1− β(s′, o)

)
.

Similarly, the transition model of an option is given by:

F(β)
π,o =

(
I− γPπ,o,♯

)−1 (
γPπ,o − γPπ,o,♯

)
,

where Pπ,o ∈ R|S|×|S| is:

Pπ,o(s, s′)=̇∑
a

π (a | s, o) P
(
s′
⏐⏐ s, a

)
.
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Borrowing the matrix splitting notation, the reward model b(β)
π,o and the transi-

tion model F(β)
π,o can be written as follows:

b(β)
π,o = M−1

π,o,♯rπ,o and F(β)
π,o = M−1

π,o,♯Nπ,o,♭ ,

where M−1
π,o,♯=̇I−γPπ,o,♯ and Nπ,o,♭=̇γPπ,o−γPπ,o,♯. Having found this matrix

splitting, the burning question is: what are the policy evaluation equations

associated with them ? According to the template of the generalized policy

evaluation equations in (4.4), we have:

vπ,o = b(β)
π,o + F(β)

π,ovπ,o (4.15)

= M−1
π,o,♯rπ,o + M−1

π,o,♯Nπ,o,♭vπ,o

=
(
I− γPπ,o,♯

)−1 rπ,o +
(
I− γPπ,o,♯

)−1 (
γPπ,o − γPπ,o,♯

)
vπ,o .

It is crucial to realize that these equations only describe the value function

for executing the policy of an option in a discounted MDP, hence : vπ,o(s) ̸=
QO(s, o). In fact, each value function vπ,o represents the cumulative discounted

rewards of the associated option policy in isolation from the rest of the system.

They do not involve the call-and-return execution model, nor any other con-

tinuation strategy for picking the next option. Furthermore, by the consistency

property, the solution vπ,o is left with no trace of the matrix splitting used to

find it, including the termination condition β itself. In other words, if we were

to solve for an unknown value vector v ∈ R|S| in the following generalized

policy evaluation, we would get:(
I−M−1

π,o,♯Nπ,o,♭

)
v = M−1

π,o,♯rπ,o(
Mπ,o,♯ −Nπ,o,♭

)
v = rπ,o

⇐⇒ (I− γPπ,o) v = rπ,o .

This means that v = (I− γPπ,o)
−1 rπ,o = vπ,o.

So is there any relation between the option-level matrix splitting and the value

function over options vO ? One way to answer this question is by defining a
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block matrix FO ∈ R(|S|×|O|)×|S| and block vector bO ∈ R(|S||O|)×1 by concatenat-

ing the option models vertically. Visually, these matrices look like:

bO =

⎡⎢⎢⎣
b(β)

π,o1
...

b(β)
π,|O|

⎤⎥⎥⎦ , and FO =

⎡⎢⎢⎣
F(β)

π,o1
...

F(β)
π,|O|

⎤⎥⎥⎦
The value function over options, taking into account the call-and-return exe-

cution model is then:

vO(s) = ∑
o

µ (o | s)
(

b(s, o) + ∑
s′

FO(s, o, s′)vO(s′)

)
(4.16)

= ∑
o

µ (o | s)
(

b(β)
π,o(s) + ∑

s′
F(β)

π,o(s, s′)vO(s′)

)
= ∑

o
µ (o | s)

(
b(β)

π,o + F(β)
π,ovO

)
(s) .

The main difference with the previous expression for vπ,o in (4.15) is that the

linear map bπ,o + F(β)
π,o inside the parenthesis is backing up values according

to the call-and-return execution model using vO rather than vπ,o. This subtle

difference hints at interesting variants on the Bellman equations for options

involving different levels of coupling. At one end of the spectrum, we have

equations of the form (4.15) which are completely decoupled from each other,

and (4.16) at the opposite end where all options are coupled via the policy over

options. The decoupling brought by (4.15) would certainly help the imple-

mentation of asynchronous updates of the kind described by Bertsekas (2012)

in the dynamic programming setting. This could lead to new execution mod-

els or more implicit forms of planning – methods where the result of all local

updates (potentially asynchronous) mimics or subsumes the explicit planning

model for options from chapter 3.

4.6.1 Polling Execution

A simple form for the value function over options is obtained when using

polling execution. This mode of execution seems to have originated from Kael-

bling (1993), and was later incorporated into Dietterich’s MAXQ framework

(Dietterich, 2000) as well as in Ryan (2004). The options paper (Sutton et al.,
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1999a) also mentions this alternative in the context of interruption execution,

which allows for switching to another option at every step. The following re-

sults were first developed in Bacon and Precup (2016) while having mistakenly

forgotten the commitment constraint coming from the call-and-return model.

After having recognized this discrepancy, the updated results were used in

Harutyunyan et al. (2018).

By virtue of the fact that we do not have to commit to the same option, it

is possible under polling execution to flatten the distribution over primitive

actions. That is, we can now define a new policy σ : S → Dist(A) coupling µ

and π by averaging out the choice of options:

σ (a | s) =̇∑
o

µ (o | s)π (a | s, o)

Hence, the transition matrix under σ is now:

Pσ(s, s′) = ∑
a

σ (a | s) P
(
s′
⏐⏐ s, a

)
,

and the immediate average reward vector is:

rσ = ∑
a

σ (a | s) r(s, a) .

It follows that the evaluation equations for the policy σ are:

vσ = rσ + Pσvσ .

At this point, we have expressed the policy over options µ and the option

policy π in our equations but the temporal aspect due to the termination con-

dition is still missing. What we are now after is some splitting matrix Mσ,♯

that implements a notion of stopping time using termination conditions. The

natural candidate is:

Mσ,♯=̇I− γPσ,♯ ,

where Pσ,♯ ∈ R|S|×|S|, Pσ,♯(s, s′) = ∑o µ (o | s)∑a π (a | s, o) (1− β(s′, o)). The

generalized policy evaluation equations corresponding to vσ are then:

vσ = M−1
σ,♯rσ + M−1

σ,♯Nσ,♭vσ , (4.17)
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and Nσ,♭ is the usual splitting matrix which contains the termination probabil-

ities:

Nσ,♭=̇γPσ − γPσ,♯ .

In component form, the generalized equations for σ for (4.17) are:

vσ(s) = ∑
o

µ (o | s)∑
a

π (a | s, o)
(

r(s, a)+ (4.18)

γ ∑
s′

P
(
s′
⏐⏐ s, a

)
∑
o′

(
(1− β(s′, o))µ

(
o′
⏐⏐ s′
)
+ β(s′, o)µ

(
o′
⏐⏐ s′
))

Qσ(s′, o′)
)

,

(4.19)

and where the mixture term simplifies to:

(1− β(s′, o))µ
(
o′
⏐⏐ s′
)
+ β(s′, o)µ

(
o′
⏐⏐ s′
)
= µ

(
o′
⏐⏐ s′
)

. (4.20)

We made a deliberate choice to write (4.19) as a mixture of two identical

components for ease of comparison with the policy evaluation equations for

Markov options in the call-and-return execution model. As shown in (3.9) for

the call-and-return execution, the inner sum over next options is instead:

(
1− β(s′, o)

)
1o′=o + β(s′, o)µ

(
o′
⏐⏐ s′
)
= P

(
o′
⏐⏐ s, o

)
.

It is the inclusion of the indicator 1o′=o as opposed to µ (o′ | s′) which dif-

ferentiates the two models of execution. In the polling execution model, the

“mixture” (see section 3.5) is over the exact same two components µ (o′ | s′),
while in call-and-return, the policy over options is mixed with the degenerate

distribution located on the previous options. Hence, despite the fact that the

trivial “mixture” (4.20) has a dependence on the previous option o on the left-

hand side, this dependence eventually goes away and we are simply left with

µ (o′ | s′) ; in the call-and-return model, o needs to be kept around to evalu-

ate P (o′ | s, o). This is why an equivalent flat policy over primitive actions is

possible in the polling model, but not for call-and-return.

The equivalence with the marginal policy σ can be leveraged to evaluate an

arbitrary stationary policy over actions, but assisted with options and a policy

over them. The idea here is that if we can find a way to embed a target policy

π that we wish to evaluate inside σ so that π (a | s) = σ (a | s) ∀s ∈ S, ∀a ∈ A,
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then the consistency property of matrix splitting methods guarantees that vπ

can be recovered. As we showed in lemma 4.5 for λ-models, we now establish

the consistency of the matrix splitting method associated with Mσ,♯.

Lemma 4.9 (Consistency of Matrix Splitting for Polling Execution). The value

function vσ = (I− γPσ)
−1 rσ also satisfies the following evaluation equations:

vσ = M−1
σ,♯rσ + M−1

σ,♯Nσ,♭vσ .

Proof. Because Mσ,♯ −Nσ,♭ = I− γPσ, solving for v in:(
I−M−1

σ,♯Nσ,♭

)
v = M−1

σ,♯rσ ,

is equivalent to:

(I− γPσ) v = rσ .

Hence v = vσ.

By showing that the polling execution model for options gives rise to a specific

matrix splitting, we can now better understand theoretically why following

options for only one time step may still help (as long as we maintain termi-

nation conditions around) thereby reinforcing a similar claim made by (Sutton

et al., 1999a, page 199):

“Thus, even if multi-step options are never actually followed for

more than one step they can still provide substantial advantages in

computation and in our theoretical understanding.”

Using matrix splitting theory, we know that this advantages in computation

(its rate of convergence) is precisely a function of the spectral radius of the

corresponding splitting: ρ(M−1
σ,♯Nσ,♭) to be exact.

4.7 A Family of Algorithms

While developing their theory of contracting MDPs, van Nunen (1976) also

showed that many classical iterative algorithms can be obtained for specific
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choices of stopping time functions: Gauss-Seidel, Jacobi, Successive Overrelax-

ation, or Richardson’s iteration for example (Varga, 1962; Watkins, 2004; Chen,

2005). Note that a similar generalization of those algorithms had already been

made in Varga’s work using the matrix splitting formalism (Varga, 1962), but

the uniqueness of van Nunen (1976) here is that it comes from a temporal notion

: stopping time. It is this realization which subtends the title of the technical

report by van Nunen and Wessels (1976b) proposing “the generation of suc-

cessive approximation methods” using stopping times. Hence, a choice of

stopping time function becomes a choice of algorithm.

Termination Function Mπ,♯ Method
λ(St, St+1) = 0 I Policy evaluation
λ(St, St+1) = 1St<St+1 D− E Gauss-Seidel iteration
λ(St, St+1) = 1St=St+1 D Jacobi iteration
λ(St, St+1) = 1 I− γPπ SR, Dyna, ER
λ(St, St+1) = λ I− γλPπ TD(λ)
λ(St, St+1) = β(St+1) I− γPπ diag(β(·)) β-models
λ(s′, o) = 1− β(St+1, Ot) I− γPπ,Ot ⊙ B Options

Table 4.1 – Matrix splitting for some multi-step methods RL methods. SR
stands for Successor Representation Dayan (1993). The matrix D here stands
for the diagonal matrix extracted from I− γPπ, while E is its strictly lower

triangular part.

The generalized policy evaluation equations (4.2) also encompass classical meth-

ods (Varga, 1962), which we summarize in table 4.1. But more importantly, the-

oretical foundations laid in this chapter also help us understand our multi-step

RL methods, starting with TD(λ). While the λ-operator in the TD(λ) algorithm

is often conceptualized as an infinite convex combination of n-step returns (as

we have seen in section 2.1.2.1), the generalized policy evaluation equations

and the notion of stopping time provide another interpretation. Just as for the

duality “discounting/random horizon” of the discount factor (lemma 2.1), the

λ parameter of λ of TD(λ) plays the role of our termination function λ from

this chapter. More specifically, we can think of the λ-operator as a choice of

termination function where the probability of continuation is a constant “λ”

and whose induced matrix splitting matrix is Mπ,♯ = I− γλPπ. Inserting this

choice of Mπ,♯ into the generalized projected policy evaluation equations from

lemma 4.8, we get:(
Φ⊤Ξ (I− γλPπ)

−1 (I− γPπ)Φ
)

w = Φ⊤Ξ (I− γλPπ)
−1 rπ ,
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an expression which can also be found in Tsitsiklis and Roy (1997a); Boyan

(2002); Bertsekas (2012); Sutton (2015b); Gehring et al. (2016). Yu et al. (2017)

independently proposed a generalized form of the Bellman equations based

on the same stopping time perspective shown in this chapter. Note that Yu

et al. (2017) considers the more general case of history-dependent stopping

time functions, purposefully ignored in this chapter, but studied in van Nunen

(1976). Bertsekas (2012) also develops a different interpretation of the λ-return

for linear function approximation based on the random horizon perspective.

The essence of the proposed geometric sampling (Bertsekas, 2012, chapter 6)

is to sample through the λ-models from section 4.3, up to termination (where

termination events are sampled explicitly).

While the successor representation (SR) is usually not conceptualized as a

multi-step RL method, we have seen in this chapter that it can be obtained for

the choice of termination function λ = 1. By listing it in table 4.1 along other

methods, we are not claiming that they are equivalent in the practical sense

but simply that they belong to the same family. Furthermore, the fact that

TD(λ) is listed along SR does not preclude one from combining the eligibility

traces mechanism of TD(λ) to learn the SR by temporal difference learning (see

recursive equations in section 2.3).

In addition, SR serves as a useful example that despite being a bad precon-

ditioner (in the sense that it is directly the inverse of the original coefficient

matrix), what matters really is that it can be transferred/reused in other tasks.

What seems to be an unreasonable expense makes a lot more sense when

amortized over a lifetime of tasks. And this amortization pays off because our

world has regularities which afford generalization. We come back to this point

in chapter 5.2.1 with a bounded rationality Simon (1957) argument. Related

ideas can also be found in Solway et al. (2014) who goes through an accounting

exercise (in the Bayesian setting) to justify the usefulness of bottleneck options

in transfer learning. Hackbusch (2016) also proposes a measure of efficacy to

compare the usefulness of two given preconditioners, taking into account their

set up time, increase in convergence rate, as well as their amortization over

different problems.

The matrix preconditioning perspective presented in this chapter may give us

a new vocabulary to talk about representation learning in the context of multi-

step RL. In fact, the qualities of good preconditioners (or matrix splittings) have
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a lot in common those of good representations. For example, when talking

about the problem of finding good representations, Smolensky (1990) wrote:

“[...] a poor representation will often doom the model to failure,

and an excessively generous representation may essentially solve

the problem in advance. ” ,

a statement which would equally hold for matrix preconditioning. In general,

we should strive for a balance of those two extremes by a having a representa-

tion which is good enough (Goldstein and Gigerenzer, 2002).

4.8 Bibliographical Remarks

The dynamic programming foundations for the material presented in this

chapter was laid out in the 70s by Jaap Wessel and Jo van Nunen (his PhD

student at the time) at the Eindhoven University of Technology in a series of

papers (van Nunen and Wessels, 1976a; Wessels, 1977; van Nunen and Wessels,

1981; van Nunen and Stidham, 1981) and in van Nunen’s thesis (van Nunen,

1976). The generalization of the Bellman equations put forward by van Nunen

and Wessel led to a formalization of what we now call modified policy itera-

tion, which had been proposed earlier by Morton (1971). A similar algorithm

was also developed independently by Puterman and Shin (1978) but using a

different theoretical analysis based on the connection between policy iteration

and Newton-Kantorovich iteration from Puterman and Brumelle (1979). The

uniqueness of van Nunen’s approach lies in its use of the notion of stopping

time to characterize the contraction properties of the resulting generalized op-

erator. As we show below, this concept turns out to be a natural fit to talk

about multi-step methods in RL.

A closely related idea was proposed independently by Bertsekas and Ioffe

(1996) under the name λ-iteration. However, the connection to the earlier work

by van Nunen must have been unknown to the authors due to the lack of ref-

erence in Bertsekas and Ioffe (1996); Bertsekas and Tsitsiklis (1996); Bertsekas

(2013). Around the same time, Sutton (1995) introduced a notion of general-

ized Bellman equations in the context of policy evaluation which turns out to be

a subcase of the general framework put forward by van Nunen (1976) (which
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encompasses both policy evaluation and control). The idea of beta-models intro-

duced in Sutton (1995) laid the groundwork for subsequent developments with

the options framework in Sutton et al. (1999a), predictive state representations

(PSR) (Littman et al., 2001) and Horde (Sutton et al., 2011; White, 2015). What

we call λ-models in this chapter are essentially beta-models with β defined

over successive states (St, St+1).

An indirect connection to the matrix splitting perspective developed in this

chapter can also be found in van Nunen (1976), citing earlier work by Porteus

(1975). Instead of studying the contraction properties of a generalized oper-

ator, Porteus (1975) considered different algorithmic improvements to speed

up successive approximation methods using a matrix-theoretic approach. It

is in this work that the concept of matrix splitting was introduced, although

indirectly through a reference to Varga (1962). In fact, Porteus (1975) used

the results from matrix splitting theory in Varga (1962) to prove the proper-

ties of his pre-inverse transform, which nowadays would simply be called matrix

preconditioning (Watkins, 2004; Golub and Van Loan, 1996; Chen, 2005).

The recursive form of the λ-models can be found in (Sutton et al., 1999a, section

5) for intra-option model learning of options, with the change of notation β =

1− λ. The GVF interpretation provided above has also recently been added to

the latest draft of the 2nd edition of the RL textbook (Sutton and Barto, 2018).

The terminology λ-models is new to this thesis but is closely related to the

concept of β-models from Sutton (1995). In fact, the β term in Sutton’s paper

corresponds in our notation to a “lambda” depending on St only. Equations

(8) and (9) of Sutton (1995) can also be interpreted as GVFs for the transition

and reward models respectively. In the tabular case, the “xt” on the right-hand

side of (8) in Sutton (1995) is the indicator function appearing in our equation

(4.9). Bertsekas (2012) also considers a similar idea in section 6.3 equations

6.67 and 6.68 of his textbook. Bertsekas’ notation “C(λ)
k ” and “d(λ)k ” can be

interpreted as empirical estimates of what we call here a λ-transition model

and a λ-reward model respectively.



Chapter 5

Learning Options End-to-End

Option discovery has been challenging partly because it is hard to define what

constitute good options. Over the years, many heuristics (which we review

in the section below) have been proposed in an attempt to characterize com-

mon properties sought for in good options. However, it has remained difficult

in general to understand which objective any of these heuristics is trying to

accomplish (speed of learning and planning, achieving fast environment cov-

erage or transfer learning). The premise of the work presented in this chapter

is that we should decouple the choice of objective from the optimization tools

used to solve it. Specifically, we focus on the question of how to learn and

construct a set of options that achieve a given objective.

By casting the problem of options discovery under the control setting, we con-

sider the problem of finding options that achieve a task as well as possible,

as measured by the expected discounted return. Based on the actor-critic ar-

chitecture (Sutton, 1984), we developed the option-critic architecture that uses

stochastic gradient ascent to learn parameterized options based on this objec-

tive. But option-critic is also not simply a policy gradient method to learn the

policy of an option, one at time. Instead, we consider the problem of learning

option policies, termination functions and the policy over options in a joint

manner. Hence, every sample of experience contributes to learning about the

expected value associated with the performance of the agent and how to up-

date its components accordingly. The benefits are twofold: first learning is

fully integrated and does not involve restarting the agent to learn each option

90
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separately, and second we are guaranteed that any update applied to an op-

tion is taking into consideration its effect on other options and the policy over

them. The second property is crucial when it comes to achieving our stated

goal of aligning our solution with the overall control objective; otherwise, lo-

cally optimal options may not lead to global optimality of the agent (Minsky,

1961; Watkins, 1989; Dietterich, 2000).

The option-critic architecture is capable of learning both options and the pol-

icy over them by leveraging the structure of the intra-option Bellman equations

(Sutton et al., 1999a), which we review in section 2. We then show in section 3.3

how those equations can be obtained by considering the evolution of a special

Markov process state-option pairs – an augmented state space. The construc-

tion of this augmented MDP then helps the derivation of new gradient theorem

for options in section 5.1. Having access to the exact form of these gradients,

we show in section 5.2 how to design a regularizer that favors long options and

penalizes for frequent switches. The option-critic architecture, introduced in

section 5.3, combines the gradient results into a learning architecture that learn

value functions in tandem with the options and policy over them. We present

three possible implementations for our architecture in section 5.4: a tabular

version in a grid domain, one using the DQN algorithm (Mnih et al., 2015)

in ALE (Bellemare et al., 2013) and a fast asynchronous extension inspired by

(Mnih et al., 2016).

5.1 Option Gradient Theorem

In the same way that policy gradient methods offer approximation in policy

space, we propose to learn options within a given parametric family.

Definition 5.1. A parametric family of randomized options and randomized

policy over options is such that for each θ ∈ Rn and for all s ∈ S, o ∈ O the

termination functions are specified by βθ(s, o) ∈ [0, 1], the option policies by

∑a πθ (a | s, o) = 1 and the policy over option ∑o µθ (o | s) = 1.

Because of the generality of definition 5.1, parameters can be shared across dif-

ferent components. However, in order to guarantee smooth gradients (Konda

and Tsitsiklis, 2000), we make the usual assumption in (4) that the termination
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conditions, the option policies and the policy over them are chosen within a

randomized family.

Assumption 4. The termination functions, option policies and policy over options are

randomized.

For example, a randomized policy for discrete action spaces could be the soft-

max policy, defined as :

πθ (a | s, o) =
exp(1/T)ϕ⊤s,a,oθ

∑a exp(1/T)ϕ⊤s,a,oθ
,

where ϕ⊤s,a,o is some feature vector and T is a temperature parameter (Sutton

and Barto, 1998). As the temperature parameter goes to zero, it is possible to

recover a near-deterministic policy from the randomized softmax parameter-

ization (Konda and Tsitsiklis, 2000). In a deep network, the feature vector ϕ

might correspond to the activation of the penultimate layer of a network with

πθ as one of its output, as shown in section 5.4. As for the parameterized ter-

mination conditions, the logistic function is a natural choice because βθ(s, o)

must specify the mean of a Bernoulli distribution dependent on a state and

option:

βθ(s, o) =
1

1 + exp−ϕ⊤s,oθ
.

When using parameterized options and a parameterized policy over options,

we use the following notation to express the intra-option Bellman equations

(3.5) :

Qθ(s, o) = ∑
a

πθ (a | s, o) QUθ
(s, o, a)

= ∑
a

πθ (a | s, o)

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

) (
Qθ(s′, o)− βθ(s′, o)Aθ(s′, o)

))
,

(5.1)
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where Aθ(s′, o) = Qθ(s′, o)− ∑o′ µθ (o′ | s′) Qθ(s′, o′) is the parameterized ad-

vantage function and QUθ
is the expected discounted return given a state, op-

tion, and primitive action taken under that option:

QUθ
(s, o, a)=̇E

[
∞

∑
t=0

γtr(St, At)

⏐⏐⏐⏐⏐ S0 = s, O0 = o, A0 = a

]
= r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
Uθ(s′, o) .

5.1.1 Objective

In a discounted MDP, there always exists a uniformly optimal (Altman, 1999)

deterministic stationary policy: this policy is optimal regardless of where the

agent starts in the environment. However, when moving to parameterized

families of policies, uniform optimality can no longer be maintained (Konda

and Tsitsiklis, 2000; Singh et al., 1994) and the concept of optimality as a whole

needs to be defined with respect to an initial distribution. The performance

objective considered throughout the rest of this chapter therefore has to be of

the form:

Jα(θ) = ∑
s,o

α(s, o)Qθ(s, o) = Eα,θ

[
∞

∑
t=0

γtr(St, At)

]
, (5.2)

where α : Dist(S×O) is an initial distribution over state and options. In order

to optimize this objective by gradient ascent, we need to make the comple-

mentary assumption to (4) according to which the option policies, termination

functions and the policy over options are differentiable.

Assumption 5. For all θ and any a ∈ A, o ∈ O: ∂µθ(o | s)
∂θi

, ∂πθ(a | s,o)
∂θi

and ∂βθ(s,o)
∂θi

exist.

Using the structure of the augmented transition probability function P̃, we

are now able to apply the blueprints of the policy gradient theorem (2.21)

and derive the gradient of (5.2) with respect to the parameters underlying the

options and policy over them.

Theorem 5.2 (Joint Gradient). Let Jα(θ) be the expected discounted return from an

initial distribution α over state-option pairs. Under the assumptions (4) and (5), the
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gradient of Jα(θ) with respect to the parameters θ is :

∇θJα(θ) = Eα,θ

[
βθ(St+1, Ot)∑

o′
∇θ

(
µθ

(
o′
⏐⏐ St+1

))
Qθ(St+1, o′)

+ ∑
a
∇θ (πθ (a | St, Ot)) QUθ

(St, Ot, a)

−∇θ (βθ(St+1, Ot)) Aθ(St+1, Ot)
]

,

where the expectation is taken under the discounted future state-option distribution.

Proof. Starting from (5.2), we have:

∂Jα(θ)

∂θi
= ∑

s,o
α(s, o)

∂Qθ(s, o)
∂θi

,

which we expand using the parameterized intra-option Bellman equations

(5.1):

∂Qθ(s, o)
∂θi

= ∑
a

(
∂πθ (a | s, o)

∂θi
QUθ

(s, o, a) + γπθ (a | s, o)∑
s′

P
(
s′
⏐⏐ s, a

) ∂Uθ(s′, o)
∂θi

)
.

(5.3)

Taking the derivative of the utility function Uθ in (5.3) yields:

∂Uθ(s′, o)
∂θi

=
∂Qθ(s′, o)

∂θi
− ∂βθ(s′, o)

∂θi
Aθ(s′, o)− βθ(s′, o)

∂Aθ(s′, o)
∂θi

. (5.4)

Expanding the derivative of the advantage function then reveals the policy

over options µθ:

∂Aθ(s′ o)
∂θi

=
∂Qθ(s′, o)

∂θi
−∑

o′

∂µθ (o′ | s′)
∂θi

Qθ(s′, o′)−∑
o′

µθ

(
o′
⏐⏐ s′
) ∂Qθ(s′, o′)

∂θi
.

(5.5)

Bringing (5.5), (5.4) and (5.3) back together, we finally obtain :

∂Qθ(s, o)
∂θi

= ∑
a

πθ (a | s, o)

(
H(i)

θ (s, o) + γ ∑
s′

P
(
s′
⏐⏐ s, a

) (
∂Qθ(s′, o)

∂θi
− βθ(s′, o)

(
∂Qθ(s′, o)

∂θi
−∑

o′
µθ

(
o′
⏐⏐ s′
) ∂Qθ(s′, o′)

∂θi

)))
,

(5.6)
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where :

H(i)
θ (s, o)=̇

(
∑

a

∂πθ (a | s, o)
∂θi

QUθ
(s, o, a)

)
+ γ ∑

a
πθ (a | s, o)∑

s′
P
(
s′
⏐⏐ s, a

) (

− ∂βθ(s′, o)
∂θi

Aθ(s′, o) + βθ(s′, o)∑
o′

∂µθ (o′ | s′)
∂θi

Qθ(s′, o′)

)
.

The expression for ∂Qθ(s,o)
∂θi

bears the same form as the intra-option Bellman

equations (3.5) but with H(i)
θ (s, o) playing the role of “reward” term. We lever-

age this intuition to solve the recursive form by drawing a connection to (3.7) in

which we used the structure of the augmented transition probability function:

∂Qθ(s, o)
∂θi

= ∑
a

πθ (a | s, o)

(
H(i)

θ (s, o)+

γ ∑
s′ ,o′

P
(
s′
⏐⏐ s, a

) (
(1− βθ(s′, o))1o′=o + βθ(s′, o)µθ

(
o′
⏐⏐ s′
) )∂Qθ(s′, o′)

∂θi

)
,

where the term between square brackets is P̃. We can then write the solution

to the recursive expression for ∂Jα(θ)
∂θi

in terms of the discounted weighting of

state-option pairs dα,θ :

∂Jα(θ)

∂θi
= ∑

s,o
α(s, o)

∂Qθ(s, o)
∂θi

= ∑
s,o

dα,θ(s, o)H(i)
θ (s, o) .

Proposition 5.3. Let
{

ϵ
(θ)
t
}∞

t=0 be a nonnegative stepsize sequence such that:

∞

∑
t=0

ϵ
(θ)
t = ∞,

∞

∑
t=0

ϵ
(θ)
t < ∞

If the rewards are bounded and that the Hessian for βθ, πθ and µθ is also bounded,

then the sequence
{

θt
}∞

t=0 defined by:

ht=̇βθ(St+1, Ot)∑
o′

∂µθ (o′ | St+1)

∂θi
Qθ(St+1, o) + ∑

a

∂πθ (a | St, Ot)

∂θi
QUθ

(St, Ot, a)

− ∂βθ(St+1, Ot)

∂θi
Aθ(St+1, O)

θt+1 = θt + ϵtht ,
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converges with probability 1 and limt→∞∇θt Jα(θt) = 0.

Proof: The boundedness of the rewards, policies and termination conditions

lead to the Hessian of Jα also being bounded. This provides the Lipschitz

continuity condition on ∇θJα necessary for standard convergence results on

stochastic gradient descent to apply (Bertsekas and Tsitsiklis, 1996, proposition

4.1).

As a consequence of the option gradient theorem 5.2, we can also obtain ex-

pressions for the gradients of the termination conditions (5.4) and policies in-

side options (5.5) when these components are optimized separately. This can

be useful when a certain structure of a set of options needs to be retained but

other parameters can be freely optimized. For example, one could choose to

manually specify the policies inside options but only optimize the termination

conditions. This decoupling could also be for planning by deriving a policy

over options using options models but while learning the option policies and

termination conditions by gradient ascent.

Lemma 5.4 (Termination Gradient). If the parameter vector is of the form θ =

[θπ , θβ, θµ], with disjoint parameters θβ for the termination conditions, then under

the assumptions (4) and (5), the termination gradient is :

∇θβ
Jα(θ) = −Eα,θ

[
∇θβ

(βθ(St+1, Ot)) Aθ(St+1, Ot)
]

.

The termination gradient in both lemma 5.4 and theorem 5.2 can be understood

intuitively. When the option choice is suboptimal with respect to the expected

value over all options, the advantage function Aθ is negative, thus driving

the gradient corrections up and increasing the odds of terminating in a given

state. Upon termination, the agent then has the opportunity to pick a better

option using its policy over option µθ. Conversely, if it is advantageous to

maintain the same option, the termination gradient will decrease the value of

βθ in that state thereby making the option lasts longer. In contrast to the way

that policy gradient for MDPs is often formulated, the advantage function Aθ

does not stem from a deliberate choice on our behalf to use a control variate

Rubinstein (1981) or baseline Williams (1992) for variance reduction. Our result

is stated directly from the derivation of the true gradient, before even thinking

about the algorithmic and statistical aspects pertaining the choice of a gradient

estimator.
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The termination gradient also shares the same semantics behind the interrupt-

ing execution model of options (Sutton et al., 1999a). While executing an op-

tion, the interruption mechanism monitors at every state the option-value func-

tion QO and compares it to value function vO. Whenever QO(s′, o) < vO(s′)

the current option is terminated, β(s′, o) = 1 and a new option is chosen

by µ. To see the parallel with the termination gradient, it suffices to note

that the interruption condition can also be stated as : QO(s′, o) < vO(s′) ⇔
QO(s′, o)− vO(s′) = AO(s′, o) < 0. Under this interpretation, the termination

gradient can therefore be understood as a gradient-based interruption execu-

tion mechanism.

Lemma 5.5 (Option Policy Gradient). If the parameter vector is of the form θ =

[θπ , θβ, θµ], with disjoint parameters θπ for the policies inside options, then under the

assumptions (4) and (5), the option policy gradient is:

∇θπ Jα(θ) = Eα,θ

[
∑

a
∇θπ (πθ (a | St, Ot)) QUθ

(St, Ot, a)

]
.

The meaning of the option policy gradient remains similar to that of the origi-

nal policy gradient theorem. If a choice of action is deemed good according to

QUθ
, the option policy gradient will point more in the direction that makes the

policy πθ more likely to pick that action again. The fact that the option policy

gradient contains the term QUθ
is what allow the updates to move in the di-

rection that makes the overall system perform better. The value of a primitive

action expressed by QUθ
is taken with respect to all possible future trajecto-

ries stemming from this choice. As can be seen from the intra-option Bellman

equations (3.5), QUθ
is not confined locally to the return up to termination and

crosses that boundary through the policy over options µθ into the entire sys-

tem. Hence, the option gradient theorem does not amount to a pseudo-reward

Dietterich (2000) setting in which the policy of an option would be optimized,

using the usual policy gradient methods for example, independently from the

other options and the policy over them. As for Aθ and Qθ, QUθ
is holistic and

properly reflects the contribution of every component – terminations, option

policies, policy over options – into the overall performance.
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5.2 Regularization

While proposition 5.3 shows convergence to a locally optimal solution, it does

not provide any guarantee on the structure of the learned options, which in fact

need not be temporally extended. To see this, let us assume that the primitive

actions are discrete so that we can generate a corresponding set of primitive

options OA of size |A| as follows:

OA=̇{(Ia, πa, βa)}a∈A where Ia = {s ∈ S | a ∈ A(s)}, πa(s) = a, βa(s) = 1 .

The optimality equations associated with OA are then:

v⋆OA
(s) = max

o∈OA

Q⋆
OA

(s, o)

Q⋆
OA

(s, o) = max
a

(
r(s, a) + γ ∑

s′
P
(
s′
⏐⏐ s, a

)
v⋆OA

(s′)

)
= v⋆(s) ,

where v⋆ is the optimal value function in the base discounted MDP. We can

see that OA then also belongs to the set of maximizers for:

max
O∈ΩD

∑
s,o

α(s, o)QO(s, o) ,

which is the same objective as (5.2), except that we are not searching in a

parametric family of randomized options as in section 5.1 but over a finite set

of options with deterministic policies and termination functions ΩD.

But if the degenerate solution OA is not directly representable, it also does

not preclude the possibility of approaching it arbitrarily close. For example

with the softmax parameterization, the temperature could be decreased to zero

(Konda and Tsitsiklis, 2000) to obtain near-deterministic option policies in the

limit. Hence, maintaining a higher temperature is desirable to prevent prema-

ture convergence to the solution OA. In that sense, the inherent noise from

the parameterized options acts as an implicit regularizer for finding meaning-

ful options. A more direct approach for encoding this propensity for diverse

action selection is the entropy regularizer of Williams and Peng (1991); Mnih

et al. (2016), which we found to be highly effective in our deep variants of the

option-critic architecture (section 5.3).
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One problem remains : how can ensure that the options will not just terminate

everywhere ? To gain some intuition, consider again the class of deterministic

termination conditions and assume that the option policies and policy over

options are fixed. Then the deterministic analogue to the termination gradient

(5.4) is the interrupting operator (Sutton et al., 1999b; Mann et al., 2014) that

sets βo(s′) = 1 whenever QO(s′, o) < vO(s′). With a greedy policy over op-

tions µO(s) = maxo QO(s′, o) and because ∀s ∈ S, ∀o ∈ O, Q(s′, o) ≤ vO(s′) =

maxo QO(s′, o), the termination conditions would be set to one immediately

under the interruption operator. The termination gradient being a function

of the negative of the advantage function, the resulting updates would drive

the parameterized termination conditions to 1 when optimizing by gradient

ascent. How can we then bias the termination gradient to favor long options

? The answer is simple : we need to make temporally extended options more

advantageous than short ones. This means that the advantage function needs to

be more positive than it would usually be in order to tilt the balance in favor

of stronger commitment as opposed to switching.

The solution that we develop in this section boils down to adding a constant

scalar to the advantage function, thereby increasing the baseline of advante-

geousness for long options. A similar idea had also been explored by Mann

et al. (2014) in a dynamic programming setting but we extend it here to the

policy gradient framework. Furthermore, we show that it can be recovered

as a special case of a more general problem formulation that considers the

computational cost associated with a solution in addition to its expected per-

formance over the reward function of the base MDP.

5.2.1 Cost Model

The idea that the degree of optimality should be modulated to take into ac-

count the finiteness of its computational resource is a mainstay of bounded ra-

tionality (Simon, 1957). Under those constraints, a decision maker must learn to

represent information as efficiently as possible (Simon, 1969). Thinking about

options from a representation learning perspective then suggests that good

options are those that make a problem easier to solve (Minsky, 1961; Simon,

1969). With such knowledge, a planner or learning algorithm decision could

be able to derive a useful solution in fewer steps than if it had access only
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to primitive actions (Sutton et al., 1999a; Hauskrecht et al., 1998; Mann and

Mannor, 2013). It this section, we formalize what learning and planning faster

with options might mean by incorporating a cost into our original objective

(5.2). We then show that the interpretation regarding the role of a baseline (or

margin) term in the advantage function can be recovered within this problem

formulation.

Using the notation for the augmented state space of section 3.3, we define a

cost c̃ : S̃×A× S̃→ R which is a function of the current augmented state, the

current action, and next augmented state : c̃(s̃t, at, s̃t+1). A benefit of defining

our notion of cost in this form is that it is now possible to use the same op-

timization tools developed in section 5.1 for the expected discounted sum of

reward.

As for reward function of the base MDP, the interaction of π̃ with the aug-

mented transition probability function P̃ (section 3.6) and cost c̃ underlies the

definition of the following expected discounted cost :

D̃O(s̃)=̇E

[
∑
t=0

γt c̃(S̃t, At, S̃t+1)

⏐⏐⏐⏐⏐ S̃0 = s̃

]
.

We then express the fact that we are interested in not only options that achieve

a good return, but also those which are cheap in a constrained formulation

of our original objective (5.2). Switching to the notation Dθ(s, o)=̇D̃θ(s̃), our

problem is formulated with respect to a randomized family of options (defini-

tion 5.1) as follows :

max
θ

∑
s,o

α(s, o)Qθ(s, o)

subject to: ∑
s,o

α(s, o)Dθ(s, o) ≤ k , (5.7)

where k ∈ R is a set constant. While the topic of constrained optimization

for dynamic programming is well-understood (Altman, 1999), the Linear Pro-

gramming (LP) algorithmic solutions required to solve such problems are in-

compatible with model-free methods and computationally very demanding.

To avoid these complications, we cast our problem differently by taking the
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Time

Base MDP + Options

Deliberation Costs

Figure 5.1 – The switching cost is incurred upon entering SMDP decision
points, represented by open circles. The average decision cost per primitive

step (filled circle) is represented by the intensity of the subtrajectory.

following Lagrangian relaxation (Sennott, 1991) :

max
θ

Jc
α(θ) where Jc

α(θ)=̇∑
s,o

α(s, o) (Qθ(s, o)− ηDθ(s, o)) , (5.8)

and η is scalar that reflects the importance of maximizing the reward in the

external environment relative to the intrinsic cost that a decision maker has to

incur.

5.2.2 Switching Cost

Long options can be promoted by imposing a cost for deciding too often about

what option to choose next. To see this, imagine that we must pay a cost η

whenever an option terminates. A back-of-the-envelope calculation tells us

that if the probability of continuing with the same option (one minus the ter-

mination condition) is a constant κ, then the expected discounted duration

of that option is 1
1−κγ and the average decision cost per step is η(1− κγ). If

the probability κ of continuing increases, we see that the average cost rate de-

creases. On the other hand, if an option terminates at every step then k = 0

and the cost rate reaches its maximum with η units per steps. Long options

therefore lead to a better amortization of the decision cost.

Consider the case where the cost function is of the form cθ(s′, o). Since Dθ

shares the same underlying transition probability function as Qθ, we can also

write (5.8) as the sum of the base MDP reward function r with the cost func-

tion cθ. This additive transformation of the reward function can be thought

of as defining a new MDP over an augmented state space. The following

intra-option Bellman expresses the expected discounted (mixed) return over
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the transformed reward function:

Qc
θ(s, o) = ∑

a
π (a | s, o)∑

s′
P
(
s′
⏐⏐ s, a

) (
r(s, a)

− ηcθ(s′, o) + γQc
θ(s
′, o)− γβθ(s′, o)Ac

θ(s
′, o)

)
.

Furthermore, if cθ(s′, o) = γβθ(s′, o) (which we call a switching cost function)

we have :

Qc
θ(s, o) = ∑

a
π (a | s, o)

(
r(s, a) (5.9)

+ γ ∑
s′

P
(
s′
⏐⏐ s, a

) (
Qθ(s′, o)− βθ(s′, o)

(
Ac

θ(s
′, o) + η

)) )
, (5.10)

where Ac
θ(s
′, o)=̇Qc

θ(s
′, o) − vc

θ(s
′). The introduction of the switching cost to

the base MDP reward therefore leads to a different form for the intra-option

Bellman equations (3.5) where a scalar η is now added to the advantage func-

tion. This suggests that the effect of using a switching cost η is to set a baseline

on how good an option is believed to be compared to vθ. By increasing η, we

effectively express that persisting with an option might be preferable to recon-

sidering the current course of actions immediately. This preference for com-

mitting to the same option might be motivated by computational or metabolic

limitations (Simon, 1957), by the inherent approximation error (due to finite

predictive capacity) or due to uncertainty in the value estimates (Lloyd and

Dayan, 2018).

5.2.3 Different Horizons for Cost and Reward

The generality of the regularized objective (5.8) allows a decoupling of the

internal horizon on the expected discounted cost with the discount factor of

the external environment. In this case, the unconstrained objective becomes:

Jγ,τ
α (θ)=̇∑

s,o
α(s, o)

(
Qγ

θ(s, o)− Dτ
θ(s, o)

)
. (5.11)

where Dτ
θ is the expected τ-discounted cost and Qγ

θ the expected discount

sum of rewards in the base MDP. The intra-option Bellman equations over the
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switching cost being:

Dτ
θ(s, o) = ∑

a
π (a | s, o)∑

s′
P
(
s′
⏐⏐ s, a

) (
cθ(s′, o) + τQθ(s′, o)− τβθ(s′, o)Aθ(s′, o)

)
,

setting τ = 0 with cθ(s′, o) = γβθ(s′, o) leads to :

Dτ=0
θ (s, o) = ∑

a
π (a | s, o)∑

s′
P
(
s′
⏐⏐ s, a

)
cθ(s, o, s′) .

Taking the derivative with respect to the termination-specific parameters θβ,

we have :

∂Dτ=0
θ (s, o)

∂θi
= ∑

a
π (a | s, o)∑

s′
P
(
s′
⏐⏐ s, a

)
γ

∂βθ(s′, o)
∂θi

.

Finally by linearity of (5.11), the termination gradient (5.4) for the mixed-

discounted case γ, τ = 0 becomes:

∇θβ
Jγ,τ=0
α (θ) = −Eα,θ

[
∇θβ

βθ(St+1, Ot) (Aθ(St+1, Ot) + η)
]

. (5.12)

Once again, η appears along with the advantage function. But there is here a

subtle (but structurally important) difference with the case considered in the

previous section where the two horizons are aligned and γ = τ. Indeed, the

termination gradient based on (5.10) turns out to be instead :

∇θβ
Jλ=τ
α (θ) = −Eα,θ

[
∂βθ(St+1, Ot)

∂θi
(Ac

θ(St+1, Ot) + η)

]
, (5.13)

where the key difference is that we have Ac
θ rather than Aθ. In the first case

where τ = 0, the advantage function Aθ in the termination gradient does

not contain any information about the expected cost corresponding to a set of

options and policy over them and η. On the other hand, when γ = τ the term

Ac
θ is the advantage function over a transformed reward function which is not

the difference between the base (original) MDP reward and the cost function.

The gradient (5.12) corresponding to τ = 0 therefore does not take into ac-

count the full extent of a change in the termination probabilities on the overall

expected cost beyond the next step. On the other hand, τ = γ allows an agent

to properly recognize that it might be preferable to sometimes incur a higher

cost immediately if the expected cost of the overall solution can be improved
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in the future. The choice of τ is therefore closely related to an agent’s abil-

ity or willingness to predict the future cost of its own internal computational

processes.

5.3 The Option-Critic Architecture

µθ

Qθ, Aθ

Environment

ActionState

πθ, βθ

Reward

Gradients

Critic
TD error

Selected OptionOptions

Policy over Options

Figure 5.2 – Option-critic is an actor-critic architecture for learning options
end-to-end. The actor contains a set of options parameterized by θ and a
policy over them µθ that are updated based on the value predictions made by

a critic.

The results of the previous section gave us the form of the gradient of ex-

pected discounted return with respect to parameterized options. Within the

same gradient-based framework, we also proposed a regularizer that favors

longer options and penalizes frequent interruptions. But in order to use these

results for learning options, we have yet to specify how to obtain gradient

estimates from experience. As in actor-critic architectures (Sutton, 1984), we

propose to learn the value terms in a critic while simultaneously applying the

resulting gradient updates to the parameterized options and policy over them

in the actor. The representation of options within an actor together with the

generation of feedback using a value-based critic result in what we call the

option-critic architecture (figure 5.2).
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In this section, we develop temporal difference learning algorithms for evalu-

ating the performance of a solution based on the structure of the intra-option

Bellman equations (5.1). We then show how gradient estimators can be built

from those value estimates using the likelihood-ratio sampling trick (L’Ecuyer,

1990; Williams, 1992) and how to reduce the variance using a control variate

(baseline) or by conditioning (Rubinstein, 1981)

5.3.1 Intra-Option Learning Algorithms for Value Prediction

Using the perspective on Markov options from the augmented state space, we

can easily derive a temporal difference (TD) learning algorithms for learning

state-option or state-option-action values needed in the critic component of

our system. For simplicity, let us assume the linear function approximation

setting in which a parameter vector w must be found such that Qθ(St, Ot) ≈
ϕ⊤t w=̇Q̂θ(St, Ot; w) and where ϕt=̇ϕ(St, Ot) is a feature vector over state-

option pairs. The TD(0) learning rule Sutton (1988) over the augmented state

space is then:

wt+1 = wt + ϵ
(w)
t (Rt+1 + γṽθ(St+1; wt)− ṽθ(St; wt))ϕt

⇔ wt+1 = wt + ϵ
(w)
t

(
Rt+1 + γQ̂θ(St+1, Ot+1; wt)− Q̂θ(St, Ot; wt)

)
ϕt ,

(5.14)

where ϵ
(w)
t is the learning rate at time t. We call the resulting learning algo-

rithm augmented TD(0) as it directly uses samples from the augmented tran-

sition probability function P̃θ without leveraging its structure (3.6). The fixed

point of this algorithm can be characterized through the ODE method (Ben-

veniste et al., 1990) as first shown by Tsitsiklis and Roy (1997a) for the case

of TD(λ). Using the augmented MDP constructed in section 3.3, we can easily

adapt the main result from Tsitsiklis and Roy (1997a) to the options framework.

Assumption 6. The augmented Markov chain induced by the option policies, termi-

nation functions and policy over options is ergodic and admits a unique stationary

distribution ξ ∈ R|S×O|, Ξ=̇diag(ξ).
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Proposition 5.6. Under assumption 6, the deterministic counterpart to the stochastic

augmented TD(0) algorithm (5.14) is described by:

w̄t+1 = w̄t + ϵ
(w)
t Φ⊤Ξ

(
r̃π̃ − (I− γP̃π̃)Φw̄t

)
.

where Φ ∈ R|S×O|×k contains the feature vectors of dimension k on its rows.

Proof: The average behavior of the stochastic updates (5.14) is taken under the

stationary distribution Ξ:

w̄t+1 = w̄t + ϵ
(w)
t Eξ

[(
r(St, At) + γQ̂θ(St+1, Ot+1; w̄t)− Q̂θ(St, Ot; w̄t)

)
ϕt

]
Breaking down this expectation, we have:

Eξ [r(St, At)ϕt] = Φ⊤Ξr̃π̃

Eξ

[
Q̂θ(St+1, Ot+1; w̄t)ϕt

]
= Φ⊤ΞP̃π̃Φwt

Eξ

[
Q̂θ(St, Ot; w̄t)ϕt

]
= Φ⊤ΞΦwt ,

which once combined back together give us the desired form. See (Tsitsiklis

and Roy, 1997a, lemma 7) for more details .

Under the usual assumptions on the sequence of step sizes: ∑∞
t=0 ϵ

(w)
t =

∞, ∑∞
t=0

(
ϵ
(w)
t

)2
< ∞ and other mild regularity conditions (Tsitsiklis and Roy,

1997a), we can then show that the augmented TD(0) converges to the solution

of the deterministic system in propositionf 5.6.

An extension to n-steps targets for augmented TD can also be easily devised

under the same framework. To see this, it suffices to note that the intra-option

Bellman equations for the true parameterized option-value function Qθ can be

written as:

Qθ(s, o) = E

[
n−1

∑
t=0

γtr(St, At) + γnQθ(Sn, On)

⏐⏐⏐⏐⏐ S0 = s, O0 = o

]
.
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Hence, to derive an n-steps augmented TD algorithm for learning Q̂θ we need

to use the following sequence of updates:

δt =

(
n−1

∑
k=0

γkr(St+k, At+k) + γnQ̂θ(St+n, Ot+n; wt)− Q̂θ(St, Ot; wt)

)
wt+1 = wt + ϵ

(w)
t δtϕt . (5.15)

The use of n-steps targets has recently received a lot of interest due to Mnih

et al. (2016) who showed increased learning performance in the ALE environ-

ment (Bellemare et al., 2013). Hence, we also incorporate this idea in our A2OC

algorithm presented in section 5.4.3.

Knowing the structure of the transition probability function P̃θ, we can im-

prove augmented TD (3.6) by the method of conditioning (Rubinstein, 1981)

for variance reduction. The basic idea here is that we can reduce the vari-

ance in our estimators by explicitly computing conditional expectation terms,

assuming that the all necessary quantities are known and tractable. The util-

ity term Uθ in the intra-option Bellman equation (5.1) is one such case where

UO(St+1, Ot) can be computed directly given a sampled state and option. The

resulting algorithm called intra-option TD(0) is described as follows:

wt+1 = wt + ϵ
(w)
t

(
Rt+1 + γÛθ(St+1, Ot; wt)− Q̂θ(St, Ot; wt)

)
ϕt , (5.16)

where Ûθ is the utility function defined as :

Ûθ(St+1, O; wt)=̇

(1− βθ(St+1, Ot))Q̂θ(St+1, Ot; wt) + βθ(St+1, Ot)∑
o

µθ (o | St+1) Q̂θ(St+1, o; wt) .

The distinction between (5.14) and (5.16) is analogous to SARSA (Rummery

and Niranjan, 1994) vs expected SARSA (Sutton and Barto, 1998) which was

shown to reduce the variance (van Seijen et al., 2009). Furthermore, when

the policy over options µθ is the greedy policy over options, (5.16) yields the

control algorithm called intra-option Q-learning introduced in Sutton et al.

(1999a).
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5.3.2 Variance Reduction and Avoiding Primitive Actions

When estimating the gradients along the discounted weighting of state-option

pairs, it is common to reduce the variance of the policy gradient estimator

using a baseline (Williams, 1992; Sutton et al., 1999b), which also corresponds

to the notion of control variates in Monte-Carlo methods (Rubinstein, 1981).

In the usual policy gradient setting over primitive actions (Sutton et al., 1999b),

the value function is often used as a baseline for the state-action value function.

Correspondingly, a natural choice of baseline for the gradient for the option

policies (5.5) involving QUθ
: S × O × A → R is the option-value function

Qθ : S×O→ R :

∇θπ Jα(θ) = Eα,θ

[
∑

a
∇θπ (πθ (a | St, Ot))

(
QUθ

(St, Ot, a)−Qθ(St, Ot)
)]

= Eα,θ

[
∑

a
∇θπ (πθ (a | St, Ot)) QUθ

(St, Ot, a)

]
.

The difference AUθ
(St, Ot, a)=̇QUθ

(St, Ot, a)−Qθ(St, Ot) can also be conceptu-

alized as an advantage function (Sutton et al., 1999b), but one that compares

the value of taking a certain primitive action to the expected performance of

the system over all actions. As usual (Sutton et al., 1999b; Peters and Schaal,

2006), the baseline Qθ – or in fact any function which does not depend on

primitive actions – does not add bias to the overall gradient:

Eα,θ

[
∑

a
∇θπ (πθ (a | St, Ot)) Qθ(St, Ot)

]

= Eα,θ

[
Qθ(St, Ot)∇θπ ∑

a
πθ (a | St, Ot)

]
= 0 .

The presence of primitive actions in the gradient for option policies can be

troublesome when A is large. A well-known approach that weakens this de-

pendence is the likelihood ratio estimator (L’Ecuyer, 1990; Williams, 1992). Us-

ing the fact that ∇θπ log πθ (a | s) = 1
πθ(a | s)∇θπ πθ (a | s), the inner summation

over primitive actions can then be written as an expectation through a change
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of measure:

∇θπ Jα(θ) = Eα,θ

[
∑

a
πθ (a | St, Ot)∇θπ (log πθ (a | St, Ot)) AUθ

(St, Ot, a)

]
= Eα,θ

[
∇θπ log πθ (At | St, Ot) AUθ

(St, Ot, At)
]

,

an idea which is also at the core of importance sampling (Rubinstein, 1981)

methods.

Having gotten rid of the summation over primitive actions, we have to address

the problem that AUθ
is defined over S×O×A. In that case, a useful strategy

to avoid learning a QUθ
separately is to sample through the choice of actions

in (3.5). We call the resulting estimator the intra-option advantage estimator:

ÂUθ
(St, Ot, Rt+1, St+1)=̇Rt+1 + γUθ(St+1, Ot)−Qθ(St, Ot) . (5.17)

While ÂUθ
is meant here to be an estimator of the advantage function, it was

also found to correspond to the TD error term in the intra-option TD(0) algo-

rithm (5.16) in section 5.3.1. An estimator of this kind was also used by Mnih

et al. (2016) in an actor-critic setting so as to maintain only a value function

rather than an action-value function in the critic.

Finally, another variant of ÂUθ
can be derived by making use of the structure

within the utility term. The resulting estimator Ãθ is not only free of primitive

actions but also of the vθ term, which would otherwise have to be computed

explicitly or learned separately in addition to Qθ ; this at the cost of increased

variance compared to (5.17). By recognizing that Uθ is an expectation :

Uθ(St+1, Ot) =(1− β(St+1, Ot))Qθ(St+1, O)

+ βo(St+1, Ot)∑
o′

µθ

(
o′
⏐⏐ St+1

)
Qθ(St+1, o′) ,

we can fully sample through the termination events and option selection pro-

cess:

Ãθ(St, Ot, Rt+1, St+1, Ot+1)=̇Rt+1 + γQθ(St+1, Ot+1)−Qθ(St, Ot). (5.18)

The distinction between the advantage estimators Ãθ and ÂUθ
follows from

the same reasoning behind augmented TD(0) vs intra-option TD(0) introduced
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in section 5.3.1. Hence, we call Ãθ the augmented advantage estimator.

5.4 Algorithms and Experiments

This section shows how the option-critic architecture can be instantiated in

many different settings.

5.4.1 Four-Rooms Domain

Hallways

Walls

Initial goal Uniformly random goal

1000 episodes

Figure 5.3 – Continuing transfer learning experiment in the four-rooms do-
main. After 1000 episodes, a new goal location is chosen randomly while

continuing learning.

The four-rooms domain of Sutton et al. (1999a) has been used frequently to

demonstrate new options discovery methods because of its simple structure.

While many domains of the same layout can be found in the literature, the ex-

periment presented in this section is based on the description found in (Sutton

et al., 1999a, p. 192).

In this instance of the four-room domains, an agent must learn to navigate

to a goal initially located in the south hallway of the north-east room (figure

5.3. Four primitive actions are available in this MDP : move up, down, left or

right. Furthermore, primitive actions fail with probability 1/3, in which case

the agent moves randomly to any neighboring empty cell reachable under the

primitive actions. A primitive action taken in the direction of a wall has no

effect and the agent remains in the same state with probability 1. As in Sutton

et al. (1999a), the reward structure is 0 on all transitions except for the final

transition into the goal state providing a reward of 1. We chose to discount the

returns with a discount factor γ = 0.99.
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The goal of this experiment is to assess two important properties of the pro-

posed learning architecture : 1) how fast can we learn to solve this task with op-

tions compared to using primitive actions ? 2) can the structure of the learned

options provide learning speedups when the task changes ? We put to the test

our option-critic architecture for different numbers of options (2, 4, 6 and 8)

against agents using SARSA and a policy gradient-based actor-critic architec-

ture using primitive actions only. Each agent would be given 1000 episodes

of at most 1000 steps to learn to reach the initial goal from any starting loca-

tion, after which, a new goal location would be randomly chosen anywhere in

the south-east room. We applied this perturbation to the task in a continuing

fashion, without resetting the parameters or interrupting the training regime.

Algorithm 5: Option-critic with tabular intra-option Q-learning
s← s0
Choose o according to an epsilon-greedy policy of µθ(s)
repeat

Choose a according to πθ (a | s, o)
Take action a in s, observe s′, r

δ← r−QUθ
(s, o, a)

if s′ is non-terminal then
δ← δ + γ(1− βθ(s′, o))Qθ(s′, o) + γβθ(s′, o)max

ō
Qθ(s′, ō)

end
QUθ

(s, o, a)← QUθ
(s, o, a) + ϵδ

θ← θ+
ϵ(θ)

(
∇θ (log πθ (a | s)) QUθ

(s, o, a)−∇θ (βθ(s′, o)) (Qθ(s′, o)− vθ(s′))
)

if βθ(s′, o) terminates then
choose new o to the epsilon-greedy policy over options

end
s← s′

until s′ is terminal

Given the small size of this MDP with its 104 states, we implemented a variant

of the option-critic in a simple tabular setting. In this setting, there is no shar-

ing of parameters and every option maintains |S| × |A| weights for its policy

and |S| to represent its termination condition. We choose to learn QUθ
and Qθ

separately using intra-option Q-learning, which made easier to compute the

advantage function as well as to implement policy improvement for the policy

over options by an epsilon-greeedy strategy. We also used the log-likelihood
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Figure 5.4 – Learning in the four-rooms domain: steps per episode (lower
is better), averaged over 5000 runs. After 1000 episodes, the goal is moved
randomly to a new location. “AC” stands for actor-critic, and “OC” for option-

critic.

ratio estimator for estimating gradient for option policies, which were imple-

mented as softmax policies with parameters initialized to zero. We represented

the termination conditions using the sigmoid function with no bias term. By

initializing the weights of termination conditions to zero, the agent would start

with options lasting on average two steps from the beginning of training (be-

cause sigmoid(0) = 1/2).

For all the agents learning under the option-critic architecture, we used the

following hyperparameters : a baseline for the gradient estimator for option

policies, a rate of random options of 1% for the epsilon-greedy policy options, a

temperature of 0.01 for the option policies, a learning rate ϵ = 0.5 for the critic

and ϵ(θ) = 0.25 for the actor components and no regularization with η = 0.

The agent using only primitive actions were set to comparable parameters. In

the actor-critic agent, we set ϵ = 0.5, ϵ(w) = 0.25 and a temperature of 0.01

for the same softmax policy parameterization. Finally, the SARSA agent used

an epsilon-greedy policy over primitive actions with 1% randomness and a

learning rate of 0.5.

To obtain a more faithful measure of the expected performance of each agent,



Option-Critic Architecture 113

Option 1 Option 2 Option 3 Option 4

0.00

0.15

0.30

0.45

0.60

0.75

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.15

0.30

0.45

0.60

0.75

0.00

0.06

0.12

0.18

0.24

0.30

0.00

0.15

0.30

0.45

0.60

0.00

0.06

0.12

0.18

0.24

0.30

0.00

0.15

0.30

0.45

0.60

0.00

0.05

0.10

0.15

0.20

0.25

Figure 5.5 – Learned options after 2000 episodes. Top row: Termination prob-
abilities for every options ie. βθ(·, o) Bottom row: option policy weight corre-

sponding to the preferred action (argmax) at every state

we ran 5000 simulations the same experiment and averaged the learning curves

in figure 5.4. We can see that during the first 100 episodes, the learning curves

are ordered according to the number of options : learning with 8 options

takes more effort than without. This phenomenon is not surprising when

learning from scratch, without function approximation and parameters sharing

: more options means more parameters to learn. Despite this challenge, the

performance gap remains small, with a curve catching up on the next one

within a few episodes of difference. A complete reversal of the curves takes

place starting from the 1000th episode when the task is moved randomly to

a new location. While a small cost had to be incurred in the initial stages of

learning, figure 5.4 suggests that building additional knowledge inside more

options proves to be useful once the agent is facing the new task.

Despite not using any regularization, figure 5.5 shows that the termination

conditions learned after 2000 episodes are not degenerate : the termination

probabilities are not saturated and the patterns of activation are specialized

locally over the state space. The weight vectors learned for the option policies

are also different from each other, preferring different primitive actions in the

same state. The bottom panel of figure 5.5 illustrates this characteristic by

plotting the weight of maximum value across all actions, at every state, for

every option policy. We can note that option 3 seems to value acting in the

north-west room more than the other options while option 4 has larger weights

around the hallway from the north-west room to the north-east one.
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Figure 5.6 – Effect of regularization on the termination conditions parameter-
ized with a bias term. Each graph is a kernel density plot over the termination
probabilities βθ(·, o) for each option, at all states. The vertical axis spans the
options while the horizontal one is over different regularization coefficients.

In this domain, it seems that the choice of initialization to zero weights as well

as the lack of bias term provide a sufficient prior favoring well-defined options.

Indeed, when using a bias term and no regularization, figure 5.6 shows that

the system converges after 2000 steps to a solution where options terminate

almost immediately. By increasing the value of the η coefficient (margin), the

option-critic architecture learns a set of options that terminate less often (βθ is

driven down). For large values of the switching cost regularizer, the system

also becomes more prone to using fewer options at the level of µ as they would

relinquish control less often.

5.4.2 Deep Q-Network with Option-Critic (DQN-OC)

To showcase the flexibility of the proposed approach and its ability to learn in

large environments, we adapted the deep network architecture of Mnih et al.

(2015) to learn options in the Arcade Learning Environment (ALE) (Bellemare

et al., 2013) under a variant of the option-critic architecture that we call DQN-

OC : Deep Q-Network with Option-Critic. As shown in figure 5.7, we designed

our network to take as input a concatenation of the last four frames converted

to grayscale and scaled to 84× 84 pixels. The resulting tensor would then be

filtered through a sequence of convolution layers, the first one consisting of 32

filters of size 8× 8 with a stride of 4, 64 filters of size 4× 4 and stride 2 in

the second and finally 64 filters of is size 3× 3 with a stride of 1 in the third

convolution layer.The resulting filtered output would then be fed through a

ReLU activation function to produce a dense output of 512 units.
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Figure 5.7 – Network architecture for DQN-OC. All the layers up to the penul-
timate one are the same as in the DQN architecture of Mnih et al. (2015).

In the original DQN architecture, the penultimate layers is used to approx-

imate the action-values at the output of the network. Instead of represent-

ing options by separate networks, we chose instead to attach two additional

heads to represent the termination conditions and option policies. Therefore,

for each concatenation of four frames fed as input to the network three out-

puts are simultaneously generated : the option values through a linear map-

ping Qθ(·, s) ∈ R|O|, the termination probabilities βθ(s, ·) ∈ R|O| via a linear-

sigmoid function and the action probabilities πθ(·|s, ·) ∈ R|O|×|A| by a softmax

layer.

A benefit of the approach taken in section 5.1 is that it led to the lemmas

(5.4) and (5.5) that can be used to learn different parts of a system indepen-

dently (as opposed to Levy and Shimkin (2012) for example). This allows us

to easily combine the control algorithm of Mnih et al. (2015) to learn a pol-

icy over options and option values, which can then be used to get gradient

estimators for the termination conditions and option policies. To address the

instability issues pertaining to nonlinear function approximation, the DQN

learning algorithm exploits two main ideas : experience replay (Lin, 1992) and

the use of secondary target network to form TD update targets. In the context

of this work, we used a similar strategy but in combination with intra-option

Q-learning. Denoting Qθ(St, Ot ; w−t ) for the option-value function under the

target network at time t, the intra-option Q-learning loss function Lθ is :

Lθ(wt) = E

[(
Rt+1 + γÛθ(St+1, Ot ; w−t )− Q̂θ(St, Ot ; wt)

)2
]

,
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where:

Ûθ(St+1, Ot ; w−t )=̇(1−βθ(St+1, Ot))Q̂θ(St+1, Ot ; w−t )

+ βθ(St+1, Ot)max
o

Q̂θ(St+1, o ; w−t ) .

The expectation here is taken under the distribution of samples:

(St, Ot, Rt+1, St+1) ,

drawn uniformly at random from an experience replay buffer. The weight vec-

tor wt for the option-value function Qθ is then updated by taking the gradient

of the loss Lθ. After 10000 parameter updates, the target network is set to the

network that had been updated throughout that period.

Having chosen by design to output only Qθ in our network, we have recourse

to the intra-option advantage estimator (5.17) to cope with the lack of explicit

QUθ
estimates in the gradient for option policies. The option policies are then

updated at time t with :

θt = θt + ϵ
(θ)
t ∇θt (log πθt (At | St, Ot)) ÂUθt

(St, Ot, Rt+1, St+1 ; wt)

where:

ÂUθt
(St, Ot, Rt+1, St+1 ; wt)=̇Rt+1 + γÛθ(St+1, Ot ; wt)− Q̂θ(St, Ot ; wt) .

As for the termination conditions, we compute their gradients using the ad-

vantage function plus a margin term η = 0.001 and horizon τ = 0 (see section

5.2 for details):

θt = θt + ϵ
(θ)
t ∇θt (βθt(St+1, Ot)) (Âθt(St+1, Ot ; wt) + η) .

In both cases, the gradients are estimated along the stationary distribution

induced by the set of options and the policy over them but not under the

distribution over samples from the experience replay buffer (which may not

properly reflect the current θt).

We used a fixed learning rate of ϵ
(θ)
t = 1/4000 for the actor components and

updated the critic using RMSProp (Tieleman and Hinton, 2012) as in Mnih et al.

(2015). We also adopted the same decay strategy as in Mnih et al. (2015) for the

ϵ parameter, starting with ϵ = 1 and ending with ϵ = 0.1 but using ϵ = 0.05
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Option 1: downward shooting sequences Option 2: upward shooting sequences

Transition from option 1 to 2

Choice of option through time White: option 1 Black: option 2

Figure 5.8 – Up/down specialization in the solution found by option-critic
when learning with 2 options in Seaquest. The top bar shows a trajectory in
the game, with “white” representing a segment during which option 1 was

active and “black” for option 2.

during the test phase. Finally, to prevent option policies from collapsing to

deterministic policies (Williams and Peng, 1991; Mnih et al., 2016) we used an

entropy regularizer of 0.01 in the corresponding gradient.

We evaluated option-critic in Asterisk, Ms. Pacman, Seaquest and Zaxxon. For

comparison, we allowed the system to learn for the same number of episodes

as Mnih et al. (2015) and did not perform environment-specific parameter op-

timization. Despite having more parameters to learn, the learning architecture

presented in this section was capable to learn in all games with options, from

the ground up, within 200 epochs. In Asterisk, Seaquest and Zaxxon, the final

results (table 5.1) surpass the scores reported in Mnih et al. (2015).

To gain an intuitive understanding of the kind of options learned by our ap-

proach, we ran a learning experiment with only 2 options in the game of

Seaquest. After having learned under the same experimental setup as for the

other games, we collected trajectories from the agent interacting with the envi-

ronment and plotted the choice of option through time. As shown in figure 5.8

that the agent has found a solution that alternates between the two options at

a regular interval. Upon closer inspection to the transitions between options,

we observed that option 1 specialized in action sequences during a resurfacing

maneuver while option 1 would be involved while diving back to the bottom

of the seafloor. It is interesting to note that the same kind of options was found

by a graph partitioning heuristic in Krishnamurthy et al. (2016).
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Algorithm Amidar Asterix Breakout Hero Pong Seaquest MsPacman Zaxxon
Mnih et al. 2015 (DQN) 739.5 6012.0 401.0 19950.0 18.9 5286.0 2311.0 4977.0
Mnih et al. 2016 (A3C) 283.9 6723.0 551.6 28765.8 11.4 2300.2 594.4 2659.0
A2OC No deliberation cost 502.9 7542.7 365.7 12253.6 20.7 1736.4 1625.2 21.4
A2OC λ = γ, η = 0.005 775.6 5326.6 386.2 10752.8 20.6 1702.7 2074.0 4459.6
A2OC λ = γ, η = 0.010 808.6 6850.6 395.8 26910.6 20.7 1688.9 2073.0 3776.0
A2OC λ = γ, η = 0.015 809.5 5830.3 373.0 24737.4 20.6 1690.8 2320.4 2960.0
A2OC λ = γ, η = 0.020 741.7 6335.3 384.2 28843.7 4.3 1675.7 2323.3 2405.0
A2OC λ = γ, η = 0.025 780.3 4798.1 377.8 24973.7 12.2 1676.0 2115.1 399.1
A2OC λ = γ, η = 0.030 764.6 4840.0 376.6 19849.3 20.5 1691.0 2185.6 710.9
A2OC λ = 0., η = 0.010 829.8 6169.5 398.5 25310.2 20.5 1743.9 2085.1 29.4
A2OC λ = 0., η = 0.020 799.2 7798.8 389.8 22691.7 20.4 1652.0 2200.4 32.4
A2OC λ = 0., η = 0.030 808.1 4986.3 381.5 20765.7 17.8 1671.1 2133.5 18.0
DQN-OC No deliberation cost 196.8 207.7 254.2 9547.3 14.8 5161.6 2207.2 2908.1
DQN-OC λ = 0., η = 0.010 238.2 7064.3 186.9 8802.2 −12.6 4644.4 2226.4 4081.8

Table 5.1 – Final scores for DQN-OC and A2OC averaged over 5 independent
runs.

5.4.3 Faster Learning with Advantage Asynchronous Option-

Critic (A2OC)

Experience replay tends to be costly in practice when implementing both DQN

(Mnih et al., 2015) and its adaptation for learning options (DQN-OC) presented

in the previous section. Instead of de-correlating the update target from Qθ by

experience replay, Mnih et al. (2016) found that applying policy gradient up-

dates asynchronously from many parallel threads has a similar effect. Further-

more, this asynchronicity provides a stabilizing effect that renders the target

network of DQN superfluous. In our experience with this method, we found

the wall-clock time can be cut at least in half and further speed improvements

can be made by increasing the number of threads.

In reference to the Asynchronous Advantage Actor-Option-Critic (A3C) (Mnih

et al., 2016) architecture, we designed an Asynchronous Advantage Option-

Critic (A2OC) variant using the same network architecture (figure 5.7) as for

DQN-OC from the previous section. However, rather than updating the option-

value estimates using the one-step intra-option Q-learning loss, we used an

n-steps target over the augmented state space as previously shown in (5.15).

The loss for Q̂θ then becomes :

L(n)
θ (w) = E

⎡⎣(n−1

∑
k=0

γkRt+k + γnQ̂θ(St+n, Ot+n ; w)− Q̂θ(St, Ot ; w)

)2
⎤⎦ ,

and where the expectation is no longer taken under the experience replay dis-

tribution but rather under the stationary distribution induced by the options
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Figure 5.9 – Evolution of the empirical termination frequencies for different
values of the regularization coefficient during learning (log scale). Without
regularization, the options terminate after only one step. Larger values of the
regularization coefficient result in more commitment during option execution.

and the policies over them. To avoid potential off-policy complications arising

from n-steps return overlapping multiple option decisions, we chose to align

n with the number of steps to termination under βθ. In the spirit of the aug-

mented estimators of section 5.3.2, we also chose to work with the augmented

advantage estimator (5.18) when applying the gradient updates to the option

policies :

θt+1 = θt + ϵ
(θ)
t ∇θ (log πθt (At | St, Ot)) Ãθ(St, Ot, St+1, Ot+1; w)

where:

Ãθ(St, Ot, Rt+1, St+1, Ot+1; w) = Rt+1 + γQ̂θ(St+1, Ot+1; w)− Q̂θ(St, Ot; w)

Finally, we applied A2OC not only over various values for the margin (τ = 0)

but also to the case where τ = γ and the switching cost is subtracted from

the instantaneous reward (section 5.2.1). Hence, whenever a termination event

is sampled under the current option, the instantaneous reward is transformed

into R̃t+1=̇Rt+1 + η. It is over such transformed rewards R̃t+1 that the above

n-steps targets are formed, which then permeates into every component via

the option-critic updates.
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Figure 5.10 – Learning curves for A2OC averaged over 5 runs for different
values of the regularization coefficient: intermediate values work best but

also depend on environmental properties per game.

The effect of the switching cost regularizer at τ = γ can be clearly observed

in 5.9 where for η = 0 (no regularization) the average rate of termination

through training is quickly driven up to 100% while larger values of η result

in less termination (more commitment). When consulting the corresponding

final scores in table 5.1, we see that intermediate values of the regularization

coefficient η result in the best performance: neither the one-step options typ-

ically found with η = 0 nor the long and inflexible options for larger values

of η perform best. For example, for the games of Amidar and Asterix, the

performance is increasing with the regularization coefficient until η = 0.010

where the performance then starts to degrade. The interplay of the regular-

ization coefficient with the returns makes the choice of η dependent on the

reward structure proper to each game. Because its effect is proportional to the

ratio with the state values, environments where high rewards are frequently

encountered would also call for larger values of the regularization coefficient

to lead to a noticeable effect.

The qualitative effect of the regularizer is easy to perceive in figure 5.11 show-

ing a trajectory of the agent in the game Amidar. In this visualization, a seg-

ment of color represents a subtrajectory executed under a given option. When
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(a) No regularization (b) With regularization (c) Termination events

Figure 5.11 – Effect of the switching cost regularizer with τ = γ in the game
Amidar. Each segment of color is a subtrajectory under a given option. The
last panel (c) shows the location of the termination events along the trajectory

shown in (b).

no regularization is applied, the resulting options tend to terminate more fre-

quently and the policy over options tend to use more of the 8 options available.

However, when a switching cost penalty is incurred, the A2OC agent learns

to persist longer with the same option. The contiguity of the color segment

is not due here to the same option being chosen repeatedly when terminat-

ing instantly but is rather shows a true – uninterrupted – commitment to the

same option policy. Termination was also observed to take place mostly at the

intersections from the underlying maze structure that represent key decision

points.

5.4.4 Related Optimization-Based Discovery Methods

Comanici and Precup (2010) proposed a gradient-based algorithm for learn-

ing termination functions for semi-Markov options. The authors considered a

special case where the termination function is parameterized using the logistic

function over an accumulation (the semi-Markov aspect) of features.

Levy and Shimkin (2012) extended the work of Comanici and Precup (2010) for

learning all components of the options framework (in the Markov case). This

work is related to our approach in that both consider the problem of jointly

learning parameterized options. However, as shown in 3.3, option-critic is built

directly from the intra-option Bellman equations (Sutton et al., 1999a) which

led to the structure of the resulting gradients to be exposed directly for the first

time. The derivation approach in Levy and Shimkin (2012) is in fact based on
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the construction of a policy over both an augmented state and action spaces.

While mathematically equivalent (after some simplification) to our construc-

tion in section 3.3, Levy and Shimkin (2012) compute the required gradients

by representing explicitly their augmented policy. In option-critic, the gra-

dient of each component of the options framework are presented separately

(but yet work together to solve the overall task). This allowed us to design

new gradient estimators with reduced variance (section 5.3.2 and allowed us

to better understand how long options can be promoted using switching cost

regularizers (section 5.2.

Daniel et al. (2016) showed how parameterized options of a specific kind can

be learned via expectation maximization (EM). They derived their approach

by taking a graphical model perspective on options execution and learning

through which is carried inference. Some of the groundwork for Daniel et al.

(2016) was laid in Daniel et al. (2012) for the mixture execution case (and not

the call-and-return one usually assumed with options).

Comanici and Precup (2010), Levy and Shimkin (2012) and Daniel et al. (2016)

considered learning from the expected discounted return. As we have seen

in section 5.2, optimizing directly for this objective can result in degenerate

options that terminate at every step. Our work seems to be the first to describe

and address this problem through a new regularizer whose interpretation finds

its roots in bounded rationality (Simon, 1957).

Also based on the policy gradient theorem, Mankowitz et al. (2016) proposed

the ASAP framework for learning parameterized skills. The notion of skills

defined in this thesis is very much related to options, but differs from the

fact that initiation sets and termination conditions are coupled and that the

execution model is more akin to a mixture model than call-and-return. In

this framework, at every step an agent is executing the skill within the current

partition of the state. The boundaries of this partition being soft, the agent need

not to commit to the same option as in the underlying augmented transition

function of the options framework (section 3.3).

Kulkarni et al. (2016) showed the first successful results of temporally extended

actions in the challenging game Montezuma’s Revenge. The learning architec-

ture proposed in this paper is valued-based and relies on the DQN algorithm

Mnih et al. (2015). A set of temporally extended actions is specified to the
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agent in the form of specific targets to reach in the game (picking the key for

example). When the agent gets close to the specified targets, the corresponding

option is terminated and the option policy is updated to maximize its intrinsic

reward (Singh et al., 2004b). In that sense, Kulkarni et al. (2016) is less of an op-

tion discovery method than a learning architecture for learning with specified

options.

The subgoal-based approach of Kulkarni et al. (2016) also relates to Silver and

Ciosek (2012) who made use of the intra-option Bellman equations and model

composition to discovery options to optimize, by dynamic programming, those

targets. In Mann et al. (2015), the existence of a local planner is assumed, which

then allows an agent to learn options that navigate between landmarks. Andreas

et al. (2017) also used a form of partial specification called policy sketches, which

are also learned in a policy gradient setting.

The decoupled two-tiered architecture of Kulkarni et al. (2016) also resembles

the work of Vezhnevets et al. (2017), which in turns is based on (Dayan and

Hinton, 1992). The system described by Vezhnevets et al. (2017) also makes

use of a gradient-based approach for learning a Manager and a Worker: the

former can be thought as a policy over options, while the latter is amenable

to the decision levels of options over primitive actions. The worker compo-

nent produces primitive actions in response to an intrinsic reward set by the

manager.

5.5 Discussion

In this work, we made the assumption that options are available everywhere to

simplify the development of our learning architecture. In order to learn initia-

tion sets in the gradient-based framework of option-critic, we would however

need a redefinition of initiation sets as functions belonging to a parametric

family of functions. It would then be more appropriate to talk of such initia-

tion sets as parameterized initiation functions. As required under assumption 4,

such parameterized initiation functions would need to be randomized to yield

smooth gradients. But what is the execution model associated with such ran-

domized objects ? When should the corresponding initiation events be sampled
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? Answering this question under the original semantics of the call-and-return

execution model is not obvious.

To get a clearer picture of how initiation sets could be incorporated into our

framework, we shall first go back to the Bellman equations for options. When

µ is a randomized policy, the restriction on the set of available options lead to

a sub-probability distribution over options. Hence, a re-normalization on the

support O(s)=̇{o ∈ O : s ∈ Io} is needed to be able to sample from µ under

the appropriate constraints. We propose at this point to generalize the notion

of initiation sets to a new concept of influence function l : S× O → R≥0 that

enters the Bellman equations in the following manner:

µl (o | s)=̇
µ (o′ | s′) l(s′, o′)
∑x µ(s′, x)l(s′, x)

QO(s, o) = b(s, o) + ∑
s′

F(s, o, s′) ∑
o′∈O

µl
(
o′
⏐⏐ s′
)

QO(s′, o′)

The 0/1 semantics of initiation sets then still hold under this definition. For

example, imagine that for some state and option s ̸∈ Io (or equivalently

o ̸∈ O(s)). We could specify this restriction as an initiation function where

l(s, o) = 0 for the given state-option pair. The resulting policy over options

would then assign µl (o | s) = 0 and the agent would never sample o, as re-

quired. Function approximation can also be used naturally with an influence

function. Despite being deterministic, a parameterized influence function lθ
can be learned under the same gradient-based framework implied by theorem

5.2 for randomized options. To see this, it suffices to note that the parameters

of lθ are also parameters of the composite policy µlθ function. Hence, if µlθ can

be evaluated explicitly, taking its gradient is the same as taking the gradient of

any other parameterized policy over options.

The recognizers framework (Precup et al., 2006) is closely related to the pro-

posed concept of influence function in the normalized form µl. Recognizers

are defined as functions c : S×A→ [0, 1] that filter actions from by a behavior

policy in order to induce a related target policy whose importance sampling

ratios have lower variance. Putting the problem of off-policy learning aside,

influence functions also act as filters on the choice of options by a policy over

options µ.
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5.5.1 Choice of Objective

In this thesis, we derive the gradient of the expected discounted return with re-

spect to some parameterized options. From this result, we then developed new

estimators in section 5.3.2 for the gradients associated with the option policies

and termination conditions, which when used for stochastic ascent lead to the

option-critic learning architecture. However, as shown in 5.2, optimizing for

the expected discounted return might lead to degenerate solutions unless the

objective is properly regularized. To this regard, we introduced a family of

switching cost regularizers in section 5.2.1 that encourages solutions in which

options persist for many steps.

Despite promising results based only on the regularized expected discounted

return, the question of what options should optimize remains largely open.

In that sense, the option-critic architecture is more of an answer to the how

options can be learned to maximize a given reward-like objective. The ability of

option-critic to align the construction of options with a given objective will ease

future research on what that objective should be. For example, the intrinsic

motivation signal defined in Kulkarni et al. (2016) could be optimized readily

under the option-critic architecture and in fully an integrated manner. An

alternative to the expected discounted return in the option-critic architecture

could also be based on the notion of eigenpurposes (Machado et al., 2017), which

were shown to reflect interesting temporal structure in the ALE domains.

Given that options are not needed for achieving more reward in a single MDP,

an important future direction of research is to consider learning options across

many tasks (Singh, 1992b; Thrun and Schwartz, 1995) or in a continuum of

tasks encountered in a lifelong (Ruvolo and Eaton, 2013) or continual fash-

ion (Ring, 1991). Going back to the perspective of options as a representation

(Minsky, 1961; Simon, 1969), good options ought to be those with which learn-

ing and planning become faster when facing new tasks. Formulating precisely

what faster means really is the crux of the matter when it comes to designing a

better objective. In this regard, we might gain useful insights on that problem

by taking a meta-learning perspective (Hampson and Volper, 1986; Schmidhu-

ber, 1987; Bengio, 1990; Sutton, 1992; Baxter, 1995; Chen et al., 2017; Finn et al.,

2017).
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Summary

This thesis showed how options can be learned fully autonomously to maxi-

mize the expected sum of discounted rewards. Our approach, option-critic, is

based on the blueprints of policy gradient methods which give our system the

ability to learn in a continual manner over arbitrary spaces. The system does

not require demonstration, expert knowledge or manual decomposition (al-

though these could be leveraged if desired). Furthermore, by virtue of being a

gradient ascent method, we know that the options learned by option-critic will

be such that they align with the overall objective of simply solving the task

at hand. This was demonstrated with experiments (section 5.4) and theory

(section 5.1.1).

Our derivation of the option-gradient theorem in section 5.1 helped us gain

more insights as to how the optimization process constructs options. For ex-

ample, we have seen that the gradient of the option policies is such that in

order to optimize for the global performance of the system, the corresponding

critic would have to be defined over triples of state, action and option. This

means that a local change to the policy of an option is always made by tak-

ing into account its impact on other parts of the system. This allows us, by

construction, to guarantee that the learning system will converge to a solution

adapted to the task. In previous approaches based on pseudo-reward heuris-

tics, overall convergence would have been difficult to guarantee as they would

typically optimize each component in isolation, and assume access to a reset

state. Our approach, on the other is fully integrated and can potentially learn

126
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about all other options at all times. In light of recent results obtained by Vezh-

nevets et al. (2017), it would however be interesting to see if the option-critic

gradients can be decoupled while maintaining its convergence properties.

We also found an interesting interpretation of the termination gradient the-

orem (5.4) as a gradient-based counterpart to the interruption operator from

earlier work by Sutton et al. (1999a). Here, if an option is deemed advantageous,

the termination gradient pushes the parameters of the termination function in

the direction which makes the option last longer. Conversely, if the critic val-

ues suggest that switching to a different option may yield more return, the

termination function corresponding to this option increases so as to terminate

more often. In general however, a learning system optimizing only for the dis-

counted return may not see any benefit in committing to the same option for

long period of time. Given the opportunity to switch option, it might as well

just do it: a phenomenon that we have observed empirically as well in section

5.4.

Based on this insight, we developed a new regularization mechanism that pro-

motes temporal commitment. Inspired by the bounded rationality framework

of Simon (1957), we proposed (section 5.2) the idea of a deliberation cost that

penalizes for frequent switches. The rationale behind this idea is that options

ought to be cheap to execute compared to choosing primitive actions at every

step. Once an option has been chosen, the cost of executing actions within is

assumed to be negligible compared to re-deciding from scratch. From that

perspective, it then makes sense to have long options because it is then easier

to amortize the decision cost. Because option-critic can be applied to any ob-

jective that is an expected sum of rewards, we showed the deliberation cost can

be incorporated without any change to the architecture. The effectiveness of

this approach was shown empirically and led to more interpretable options.

Our bounded rationality perspective on options led us to view good options

as those which make learning and planning faster. With our deliberation cost

regularizer, we assumed a particular cost structure which may not necessarily

reflect the real computation cost involved in the execution of the agent. Future

work may consider the possibility of also using actual measured computation

cost associated with the implementation of an agent running on some given

hardware. This approach may prove useful on a system like AlphaGo (Silver

et al., 2016) for example, where the cost of querying the next move involves
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a lengthy computation during Monte Carlo Tree Search. Another implication

of the bounded rationality perspective is that good options may also emerge

naturally out of an environmental setup that involves an explicit missed op-

portunity cost. The idea here would depart from the current synchronous exe-

cution model, and decouple the agent from its environment so as to introduce

opportunity cost: thinking for too long would have real consequences.

This idea that good options play a role in amortizing decision cost was also

found in our theoretical analysis of multi-step RL methods and options in

section 4.6. We have in fact shown that multi-step methods (including op-

tions) have a corresponding interpretation as matrix splittings methods (Varga,

1962) which aimed at speeding up linear iterative solvers. Such matrix split-

ting methods also admit a complementary vocabulary based on the notion of

matrix preconditioners. As with options, the design of general and fast precon-

ditioners is a longstanding problem of numerical analysis. Sometimes, good

preconditioners can be found when problem-specific knowledge is available.

However, the manual design of preconditioners, and of options, quickly be-

come a tedious process for large problems or when only partial knowledge

about the domain is available. When solving a single problem with options,

it is also clear from the connection with preconditioners that the initial setup

cost and subsequent cost per preconditioned iteration should not outweigh the

cost associated with the original problem. This new connection between ma-

trix preconditioning and options opens new research avenues for learning and

analyzing options in a lifelong learning setting.
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