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Highlights

We consider the problems of learning and plan-
ning in Markov decision processes with tempo-
rally extended actions represented in the options
framework (Sutton et al., 1999).
•We propose to use predictions about the
duration of extended actions to represent the
state.

•We develop a consistent and efficient spectral
learning algorithm.

•We show how such timing features can be used
for planning.

Motivation

Timing information is very cheap to measure and
process, even with simple hardware.

Figure : Imagine that a robot has models for options that
move radially out from the current position, this would allow
localizing with respect to all neighbouring walls.

Timing models can be advantegeous for resource-
constrained devices:
•Roomba-like robots (as in our experiments)
•Cellphones (on which using a lot of sensors or
computation drains the battery)

Building full models might also be too data and
computation-hungry:

• Investment problems, depending on long histories
or news

•Robotics, with sensors producing too much data
for real-time processing

Being able to exploit a simpler model is important.

Options Duration Model (ODM)

Instead of predicting a full model at the end of an option, we only consider when an option will terminate
given the history. We have a dynamical system with observations from Ω× {],⊥}, where ] (sharp) denotes
continuation and ⊥ (bottom) is for termination. Trajectories are of the form:

(ω1, ], . . . , ω1, ], ω1,⊥, ω2, ], . . . , ω2, ], ω2,⊥, . . .) = (ω1, ])d1−1(ω1,⊥)(ω2, ])d2−1(ω2,⊥) . . .

Representing ODM with Predictive State Representation (PSR)

Let δ(α, ω) be a random variable representing the duration of option ω when started from s ∼ α. The
probability of a sequence of options ω̄ = ω1 · · ·ωt and their durations d̄ = d1 · · · dt, di > 0 is given by:

P[d̄|α, ω̄] = α>Ad1−1
ω1,]

Aω1,⊥Ad2−1
ω2,]

Aω2,⊥ · · ·A
dt−1
ωt,]

Aωt,⊥1 .

Aω,](s, s′) =
∑
a∈A

π(s, a)P (s, a, s′)(1− β(s′)), Aω,⊥(s, s′) =
∑
a∈A

π(s, a)P (s, a, s′)β(s′), α = I[s = s0]

Theorem 1: Existence of an ODM for an MDP

LetM be an MDP with n states, Ω a set of options, and Σ = Ω×{],⊥}. For every distribution α over the
states of M , there exists a PSR A = 〈α,1, {Aσ}〉 with at most n states that computes the distributions
over durations of options executed from a state sampled according to α.

Learning ODM

The probabilities over sequences in our embedded system can be summarized in a Hankel matrix, a bi-
infinite (conceptually) matrix Hf ∈ RΣ?×Σ? with rows and columns indexed by strings in Σ?. We estimate
the Hankel matrix for a fixed finite subsets of rows and columns. The SVD decomposition of Hf provides a
way to recover a PSR (see Boots et al., 2011).

Planning with ODM

We consider PSR states obtained by the state-update procedure. Given a valid trajectory u ∈ V , the updated
state is θ>α,u = θ>αAu

θ>αAuα∞
.

Theorem 3: Linearity of the state-option value function

Let πΩ : S × Ω → [0, 1] be a stochastic stationary policy over options on the MDP M . For every ω ∈ Ω
there exists a vector ρω ∈ Rn′ so that for every distribution α over states inM and every history u ∈ V , we
have Es[QπΩ(s, ω)] = θ>α,uρω, where the expectation is over states s sampled from the distribution induced
by observing u after starting in a state drawn from α.

Experiments

We considered both discrete and continuous nagi-
vation tasks where the options allow the agent to
move radially until it hits a wall. We used Fitted-Q
iteration (Ersnt et al, 2005) for planning over ODM
states.
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Figure : (a) grid layout and optimal policy over options (b)
continuous navigation environment (c) relative error in
prediction vs rank (d) average discounted cumulative return
(continuous task) (e) average discounted cumulative return
(discrete task) (f) mean square Bellman residual (continuous
task)

Conclusion

We presented an approach to learn a predictive
model for option durations that is useful for plan-
ning. Timing models get around the problems of:

• large action spaces (by using a finite set of
options)

• large observation spaces (by focusing only on
continuation and termination).

A theoretical analysis that fully characterizes the
error of planning with timing models instead of true
transition models is left for future work.
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