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Abstract

We consider the problem of learning and planning in Markov decision processes with temporally extended actions rep-
resented in the options framework. We propose to use predictions about the duration of extended actions to represent
the state and show that this leads to a compact predictive state representation model independent of the set of primitive
actions. Then we develop a consistent and efficient spectral learning algorithm for such models. Using just the timing
information to represent states allows for faster improvement in the planning performance. We illustrate our approach
with experiments in both synthetic and robot navigation domains.
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1 Introduction

Modelling the dynamics of an agent embedded in a large, complex environment is key to building good planning algo-
rithms for such agents. In most practical applications, models are carefully designed by hand, and the agent’s “state” is
given by measurements which are understandable by the designer of the system (such as spatial location and velocity,
in the case of a robot). However, learning dynamical models for such states from data, as well as planning with them
can be quite tricky. An alternative idea is to use models that are “subjective”, centered on the agent’s own perception
and action capabilities. For example, affordances [Gibson, 1977] describe “state” through the courses of action that are
enabled. Similarly, in robotics, subjective representations have been used to model dynamics, e.g. [Bowling et al., 2005;
Stober et al., 2011]. Such models are appealing from a psychological point of view, but run into computational problems
in very large observation spaces.

In this paper, we focus on a special class of subjective models, timing models, which arise from restricting the observations
available to the agent to just information about the duration of certain courses of action. Timing of events is understood
to be crucial to animal learning [Machado et al., 2009]. The goal of this paper, however, is not learning of the timing
of external events, but rather to learn the duration of courses of action that an agent might take. The ensemble of such
durations will constitute the agent’s state, which will be maintained as new data is received. We use the framework
of options [Sutton et al., 1999] to model extended courses of actions, and we present an approach for learning option
durations.

Our models over durations can be viewed as affordances if we consider an option to be available if its estimated duration
is within some reasonable bounds. Note that these models are much simpler than full option models, which provide
joint information on the timing as well as the state or observation in which the option will terminate, e.g. [Wolfe and
Singh, 2006]. Our approach can also be interpreted as a computationally and statistically efficient way of exploiting prior
information about useful courses of action provided in the form of options. As a consequence, the size of our models
is independent of the number of possible primitive actions in the underlying system. Another interesting feature of our
approach is that we are able to learn feature representations for states using timing information only; this means our
method can be applied to observable settings with high-dimensional observations and to partially observable settings as
well.

Of course, the utility of such timing models depends strongly on the nature of the task to be solved by the agent, as
well as on the “quality” of the options available to the agent. The simplest example in which option duration models
are beneficial is that of minimum time to goal problems, in which an agent receives a fixed penalty per time step until
its task is completed. In this case, knowing the duration of an option immediately gives us the reward model, so the
option duration model has direct value for a planner. More generally, option duration models are beneficial as a form
of localization. If you imagine a robot that has models for options that move radially out from the current position, this
would allow localizing with respect to all neighboring walls. Finally, consider a problem in which a financial agent is
holding stocks, and options which hold a particular stock while it is above a certain value, and sell under that value. In
this case, timing models tell us exactly when stocks would be crossing certain barriers. It is clear in this case that, even
though we are estimating only durations, these encode important state information (because of the way in which the
options are defined).

In this paper we analyze the capacity of option duration models to represent states in a Markov Decision Process (MDP).
We propose a spectral algorithm for learning option duration models which builds on existing work for learning trans-
formed predictive state representations [Rosencrantz et al., 2004a]. Finally we evaluate the quality of learning and plan-
ning with our model in experiments with discrete MDPs.

1.1 Markov Decision Processes and Temporally Extended Actions

A Markov decision process (MDP) is a tuple M = 〈S,A, P,R〉 where S is the state space, A is the action set, P : S × A →
(S → [0, 1]) defines a probability distribution over next states, and R : S × A → R is the expected reward function (see
[Puterman, 1994] for a review). We refer to probability distributions on S by α, but sometimes use α to stress that we
view them as vectors in RS . Suppose α is a distribution over S and π : S ×A→ [0, 1] is a stochastic action policy which,
given state s, chooses action a with probability π(s, a). The environment then returns a state sampled from P ; and the
resulting state distribution α′ is given by:

α′(s′) =
∑
s∈S

α(s)
∑
a∈A

π(s, a)P (s, a)(s′) . (1)

Temporal abstraction in MDPs has been used as a tool to speed up learning and planning algorithms. We adopt the
framework of options [Sutton et al., 1999], with the goal of learning state representations based on option timing models.
An option is a tuple ω = 〈Iω, πω, βω〉 where Iω ⊆ S is the set of initial states, πω : S × A → [0, 1] is the option’s stochastic
action policy, and βω : S → [0, 1] is the option termination probability for each state.
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1.2 Predictive State Representations

A predictive state representation is a model of a dynamical system where the current state is represented as a set of predic-
tions about the future behavior of the system [Littman et al., 2002; Singh et al., 2004]. We use a particular instantiation
of this general idea, the so-called transformed linear predictive state representation [Rosencrantz et al., 2004b], which we
abbreviate for simplicity as PSR.

A PSR with observations in a finite set Σ is a tuple A = 〈αλ,α∞, {Aσ}σ∈Σ〉 where αλ,α∞ ∈ Rn are the initial and final
weights respectively, and Aσ ∈ Rn×n are the transition weights. The dimension n of these vectors and matrices is the
number of states of the PSR. The function fA : Σ? → R computed byA assigns a number to each string x = x1x2 · · ·xt ∈ Σ?

as follows:
fA(x) = α>λAx1Ax2 · · ·Axtα∞ = α>λAxα∞ . (2)

The behavior of a stochastic dynamical system producing observations in a finite set Σ can be entirely characterized by
the function f : Σ? → R giving the probability f(x) of observing each possible sequence of observations x. A convenient
algebraic way to summarize all the information conveyed by f is its Hankel matrix, a bi-infinite matrix Hf ∈ RΣ?×Σ?

with
rows and columns indexed by strings in Σ?. In particular, a well-known result states that Hf has rank at most n if and
only if there exists a PSR Awith n states satisfying fA = f [Carlyle and Paz, 1971; Fliess, 1974]. The Hankel matrix Hf is
tightly related to the system dynamics matrix (SDM) of the stochastic process described by f [Singh et al., 2004], but while
the entries of the Hankel matrix represent joint probabilities over prefixes and suffixes, the corresponding entry in the
SDM is the conditional probability of observing a suffix given the prefix. An empirical estimate of the Hankel matrix can
be obtained given a finite set of prefixes and suffixes. The singular value decomposition can then be used to recover a
PSR (see [Boots et al., 2011] for details).

2 Option Duration Models

We are interested in the dynamics of an agent interacting with an MDP M via a set of options Ω. Recall that in this
setting the agent is not allowed to perform primitive actions, and options must be executed until termination. We are
interested in considering situations where the duration of an option constitutes an informative statistic about the state of
the MDP. Hence, the history of the agent’s interaction with an MPD will be given by a trajectory consisting of option-
duration pairs: (ω1, d1)(ω2, d2) · · · (ωt, dt), with ωi ∈ Ω, di ∈ N = {1, 2, . . .}. Focusing on the sequence of options and
termination/continuation events, we have a discrete dynamical system with observations from Ω × {],⊥}, where ]
(sharp) denotes continuation and ⊥ (bottom) denotes termination. The previous trajectory in this new dynamical system
looks as follows:

(ω1, ], . . . , ω1, ], ω1,⊥, ω2, ], . . . , ω2, ], ω2,⊥, . . .) = (ω1, ])
d1−1(ω1,⊥)(ω2, ])

d2−1(ω2,⊥) . . .

Formally, we are mapping a dynamical process with trajectories in (S × A)? (representing the interaction of the agent
with the MDP), to a process with trajectories in (Ω×{],⊥})? representing the duration of option execution. This mapping
induces a new dynamical system, whose properties might be useful for planning with options in the original system.

We now show that the probability distributions over the duration of options can be compactly represented in the form
of a PSR. Let s0 ∈ S, ω = 〈I, π, β〉, and d > 0 be an integer. We write δ(s0, ω) for the random variable representing the
duration until termination of option ω from state s0. We are interested in the following quantity:

P[δ(s0, ω) = d] =
∑
s̄∈Sd

∑
ā∈Ad

P[s0, a0, s1, a1, · · · , ad−1, ad−1, sd,⊥] , (3)

where s̄ = s1 · · · sd is the sequence of states traversed by ω, ā = a0 · · · ad−1 is the sequence of actions performed by by ω,
and ⊥ denotes the option termination. With some algebra, it can be shown that summing this expression over s̄ and ā
yields:

P[δ(s0, ω) = d] = e>s0A
d−1
ω,] Aω,⊥1 , (4)

where we have used the following definitions: es0 ∈ RS is an indicator vector with es0(s) = I[s = s0], Aω,] ∈
RS×S is a matrix with Aω,](s, s

′) =
∑
a∈A π(s, a)P (s, a, s′)(1 − β(s′)), Aω,⊥ ∈ RS×S is a matrix with Aω,⊥(s, s′) =∑

a∈A π(s, a)P (s, a, s′)β(s′), and 1 ∈ RS is a vector of ones. More generally, we can prove the following:

Theorem 1. Let M be an MDP with n states, Ω a set of options, and Σ = Ω × {],⊥}. For every distribution α over the states of
M , there exists a PSR A = 〈α,1, {Aσ}〉 with at most n states that computes the distributions over durations of options executed
from a state sampled according to α.

We will call any PSR computing distributions over durations of options an option duration model (ODM).
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3 Experiments

We first assess the learnability of our model in practice using a gridworld environment. We use a 4-connected grid
with four actions representing the cardinal directions (NEWS). Unless the current state is a “wall” each action moves the
agent one step in the specified direction with probability 0.9, and remains in the current state with probability 0.1. We
also define one option for each cardinal direction. These options take as many steps as possible in the specified direction
until they hit a wall, at which point the option terminates. A uniform random exploration policy is used for sampling
10000 episodes in which five options are executed up to termination. We also collected a test set consisting of 10000
trajectories of eight options sequences. We evaluate the prediction accuracy by computing the relative error over the
estimated remaining number of steps in the currently executing option. For each test trajectory, we picked a time index
uniformly at random and conditioned the learned ODM on the history up to this point. These random split points were
then kept fixed throughout all evaluations. Figure 1a shows that the prediction accuracy increases as the dimension of
the ODM gets larger. More samples also allow for better predictions. Note that since the prediction task is inherently
stochastic, even the true ODM cannot achieve zero relative error.

3.1 Planning

We use the Fitted-Q iteration (FQI) algorithm of Ernst et al. [2005] for planning over a learned ODM. We make state
directly over the ODM state vector updated at each step with the corresponding operator (continuation or termination)
according to the linear form in (2). A gridworld environment with obstacles is used for evaluation and once again, any
of the four actions can fail with probability 0.1 in every state. An immediate reward of 100 is obtained at the goal and
collisions with the walls are penalized by -10. Taking a primitive step does not incur an immediate cost but the length
of the trajectories affect the cumulative reward through a discount factor of 0.9. A dataset of 1000 trajectories of eight
options sequences was collected with a discrete uniform policy over options. For each curve shown in 1b, we use our
dataset to learn an ODM and plan over it. We evaluate the performance of the greedy policy by taking 100 Monte-Carlo
estimates in the simulated environment. Given the true underlying MDP and a set of options, we can compute the
resulting Semi-Markov Decision Process (SMDP) (see p. 26 of Sutton et al. [1999]) and solve it using value iteration. The
expected discounted cumulative return in the SMDP serves as our baseline. Figure 1b shows that an optimal policy can
be obtained using 1000 trajectories and one step of FQI. Interestingly, it seems that even when using an imperfect model
(such as the one built with 100 trajectories in fig. 1b), we can still recover a near-optimal policy.
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