
Predictive Timing Models

Pierre-Luc Bacon
McGill University

pbacon@cs.mcgill.ca

Borja Balle
McGill University

bballe@cs.mcgill.ca

Doina Precup
McGill University

dprecup@cs.mcgill.ca

Abstract

We consider the problems of learning and planning in Markov deci-
sion processes with temporally extended actions represented in the op-
tions framework. We propose to use predictions about the duration of
extended actions to represent the state and show how this leads to a
compact predictive state representation model independent of the set of
primitive actions. Then we develop a consistent and efficient spectral
learning algorithm for such models.

1 Introduction

Modelling the dynamics of an agent embedded in a large, complex environment is key to build-
ing good planning algorithms for such agents. In most practical applications, models are carefully
designed by hand, and the agent’s “state” is given by measurements which are understandable by
the designer of the system (such as spatial location and velocity, in the case of a robot). However,
learning dynamical models for such states from data, as well as planning with them can be quite
tricky. An alternative idea is to use models that are “subjective”, centered on the agent’s own per-
ception and action capabilities. For example, affordances [6] describe “state” through the courses of
action that are enabled. Similarly, in robotics, subjective representations have been used to model
dynamics, e.g. [2, 13]. Such models are appealing from a psychological point of view, but run into
computational problems in very large observation spaces.

In this paper, we focus on a special class of predictive models, timing models. Timing of events is
understood to be crucial to animal learning [9]. The goal of this paper, however, is not learning of
the timing of external events, but rather to learn the duration of courses of action that an agent might
take. The ensemble of such durations will constitute the agent’s state, which will be maintained as
new data is received. We use the framework of options [14] to model extended courses of actions,
and we present an approach for learning option durations. Note that such models can be viewed
as affordances, if we consider an option to be available if its estimated duration is within some
reasonable bounds. At the same time, these models are much simpler than full option models, which
provide joint information on the timing as well as the state or observation in which the option will
terminate, e.g. [15].

The simplest example in which option duration models are beneficial is that of minimum time to
goal problems, in which an agent receives a fixed penalty per time step until its task is completed. In
this case, knowing the duration of an option immediately gives us the reward model, so the option
duration model has direct value for a planner. More generally, option duration models are beneficial
as a form of localization. If you imagine a robot that has models for options that move radially out
from the current position, this would allow localizing with respect to all neighbouring walls. Finally,
consider a problem in which a financial agent is holding stocks, and options which hold a particular
stock while it is above a certain value, and sell under that value. In this case, timing models tell
us exactly when stocks would be crossing certain barriers. It is clear in this case that, even though
we are estimating only durations, these encode important state information (because of the way in
which the options are defined).

1

In this paper, we propose a spectral learning algorithm for option duration models, which builds on
existing work for learning transformed predictive state representations [10], and show that it learns
useful predictions with reasonable amounts of data. Proofs of mathematical statements are omitted
due to space limitations and will appear in a longer version of this work.

2 Modelling Option Duration with PSR

We are interested in the dynamics of an agent interacting with an MDP via a set of options Ω, from
the point of view of the options’ termination events. Hence, trajectories consist of a sequence of
options and their durations (ω1, d1, ω2, d2, . . .). Focusing on the sequence of options and termina-
tion/continuation events, we have a discrete dynamical system with observations from Ω × {],⊥},
where] (sharp) denotes continuation and ⊥ (bottom) denotes termination. The previous trajectory
in this new dynamical system looks as follows:

(ω1,], . . . , ω1,], ω1,⊥, ω2,], . . . , ω2,], ω2,⊥, . . .) = (ω1,])
d1−1(ω1,⊥)(ω2,])

d2−1(ω2,⊥) . . .

Formally, we are mapping a dynamical process with trajectories in (S × A)? (representing the
interaction of the agent with the MDP), to a process with trajectories in (Ω× {],⊥})? representing
the duration of option execution.

Given s ∈ S and an option ω ∈ Ω, let δ(s, ω) be the random variable counting the number of steps
until termination when following ω from s. Note that smight be an initial state for ω, but also a state
traversed during its execution, in which case δ(s, ω) is the remaining duration until termination.

Let D denote the set of all probability distributions over N, and Ds
ω ∈ D the distribution of the

random variable δ(s, ω). Thinking of this distribution as a function of s, we define a map ∆ω :
S → D, with ∆ω(s) = Ds

ω . Bundling together the maps {∆ω}ω∈Ω, we get a map ∆ : S → DΩ

that assigns to each state in the MDP the tuple of distributions over the durations of all options
available to the agent1. These maps extend directly to probability distributions over states: if α is a
distribution on S, then ∆ω(α) =

∑
s∈S α(s)∆ω(s), which is a mixture of probability distributions

from D. The extension of ∆ to distributions is immediate.

We say that the set of options Ω is rich for MDP M if the map ∆ : S → DΩ is injective, so for
every s, s′ ∈ S there exists some option ω ∈ Ω such that Ds

ω 6= Ds′

ω . Clearly, in this case, ∆
will uniquely identify states. If ∆ is not injective, such models can still be sufficient for planning
in special circumstances. For example, consider minimum-time-to-goal problems, in which fixed
negative rewards are attributed per time step, and suppose the agent intends to plan using options
only. In this case, states for which ∆(s) = ∆(s′) will also have the same optimal value function V ∗Ω
(a result that follows directly form the way in which option models are defined [14]).

We will now establish a predictive state representation for option duration models. A predictive
state representation is a model of a dynamical system where the current state is represented as a
set of predictions about the future behavior of the system [8, 12]. We use a particular instantiation
of this general idea, the so-called transformed linear predictive state representation [11], which we
abbreviate for simplicity as PSR.

A PSR with observations in a finite set Σ is a tupleA = 〈αλ,α∞, {Aσ}σ∈Σ〉 where αλ,α∞ ∈ Rn
are the initial and final weights respectively, and Aσ ∈ Rn×n are the transition weights. The
dimension n of these vectors and matrices is the number of states of the PSR. Though PSR is
the usual name for this type of model in the reinforcement learning literature, they are also called
weighted finite automaton (WFA) [5] or observable operator model (OOM) [7]. This distinction
reflects the fact that this same parametrization can be used to define models with different semantics,
depending on the meaning associated to the values computed by the PSR.

A PSRA computes a function fA : Σ? → R that assigns a number to each string x = x1x2 · · ·xt ∈
Σ? as follows:

fA(x) = α>λAx1
Ax2
· · ·Axt

α∞ = α>λAxα∞ . (1)
Let x be a sequence of observations produced by a dynamical system, and fA(x) be the probability
that the system produces x. The vector αλ represents the initial state of the system.

1We assume for simplicity that all options are available from all states; otherwise the maps ∆ω have domain
Iω instead of S and some non-essential technical issues arise when defining ∆.

2

If a history u ∈ Σ? has already been observed, the conditional probability of observing a sequence
of observations v ∈ Σ? after u is:

fA,u(v) =
fA(uv)

fA(u)
=

α>λAuAvα∞
α>λAuα∞

=
α>uAvα∞
α>uα∞

. (2)

Hence, given some history u, the initial state αλ can be updated to a new state αu/(α>uα∞), which
allows computing probabilities of future observations conditioned on the current history. Because
the partition of a sequence of observations x into a history u and a future v (also called test) yields
x = uv, we sometimes call histories prefixes and futures suffixes.
Theorem 1. Let M be an MDP with n states, Ω a set of options, and Σ = Ω × {],⊥}. For every
distribution α over the states of M , there exists a PSR A = 〈α,1, {Aσ}〉 with at most n states that
computes the distributions over durations of options executed from a state sampled according to α.

We will call any PSR computing distributions over durations of options an option duration model
(ODM). Note that the MDP transition kernel and the options’ stochastic policies are coupled inside
the transition matrices of ODM A. This coupling is the reason why we can model the timing of
options in an MDP via a process with observation on the set Ω × {],⊥} whose size is independent
of set of actions A, and whose transitions operators have size at most |S|. Note that this can be
particularly interesting in settings where the number of possible actions is very large but a small
number of options is enough to specify the “useful” modes of operation of an agent.

An ODM A can be used to query the probability of observing any trajectory in Σ? starting from
a state sampled from α. In principle, this includes trajectories which are not valid for an agent
interacting with an MDP via options – e.g. we can query the probability of trajectories of the form
(ω1,])

d1(ω2,])
d2 . . ., where ω1 was interrupted before termination. Note that this type of trajecto-

ries will never be observed by an agent that explores an environment by interacting with it only via
options executed in call-and-return fashion. In particular, the agent would not need to learn about
these trajectories if the goal is to plan via options only. We now show that an ODM can be restricted
to produce non-zero probabilities for legal trajectories only, without increasing the size of the model.

If options are always executed to termination, valid trajectories always belong to a subset of Σ?,
denoted V . The probability of asequence of options ω̄ = ω1 · · ·ωt and their durations d̄ = d1 · · · dt,
di > 0. is given by:

P[d̄|α, ω̄] = α>Ad1−1
ω1,]

Aω1,⊥A
d2−1
ω2,]

Aω2,⊥ · · ·A
dt−1
ωt,]

Aωt,⊥1 . (3)

This can be computed using the ODMA = 〈α,1, {Aσ}〉 from Theorem 1. Now we want to modify
this model so that it only assigns non-zero probabilities to valid trajectories. That is, if f is the
function computed by A, we want another PSR that computes the function:

f̃(x) =

{
f(x) x ∈ V ,

0 x /∈ V .
(4)

The following result shows that f̃ can also be computed by a PSR with almost the same size as A.

Theorem 2. If A has n states, then there exists a PSR with at most (|Ω|+ 1)n states computing f̃ .

3 Spectral Learning of ODM

Because an option duration model over valid trajectories can be represented with a PSR of moderate
size, we can use the spectral learning algorithm in [1] to estimate an ODM from a set of sampled
trajectories Σ? produced by the agent. For each trajectory the initial state is sampled according to
a fixed distribution α. We assume that the options executed by the agent are selected according to
some fixed open-loop policy. This is important if we want to use the sampled trajectories to learn a
model of the environment which is independent of the exploration policy.

The algorithm takes as input Σ and a basis B in Σ?, uses them to estimate the corresponding Hankel
matrices. The Hankel matrix is a convenient algebraic way to summarize a dynamical system. It is a
bi-infinite matrix, Hf ∈ RΣ?×Σ?

with rows and columns indexed by strings in Σ?, which contains
the joint probabilities of prefixes and suffixes. In many situations of interest, including POMDPs,

3

the Hankel matrix has finite rank. Instead of looking at the full Hankel matrix, learning algorithms
(including ours) usually work with finite sub-blocks of this matrix. Once we have the Hankel ma-
trices, we can then recover a PSR by performing singular value decomposition and linear algebra
operations on these matrices. Although these methods work almost out-of-the-box, in practice the
results tend to be sensitive to the choice of basis. We now give a procedure for building a basis
which is tailored for the case of learning option duration models.

Our procedure is parametrized by the maximum possible duration Tω of each option; an upper bound
Kr ≥ 1 on the number of option executions needed to reach every possible state in M when initial
states are sampled from α; and, an upper bound Kd ≥ 1 on the number of option executions needed
to distinguish every pair of states in M in terms of option duration information. These quantities
can be given or obtained via cross-validation. The intuition is simple: we want to ensure that we
have enough prefixes in the Hankel matrix to get to all reachable states in M , and enough suffixes
to make sure each of these states can be distinguished from each other. The following construction
formalizes this intuition.

We obtain the set P of prefixes in the basis as the union of two disjoint sets. The first set is denoted
by P⊥ and is defined as follows:

P⊥ =
{
x1x2 · · ·xt

∣∣ 1 ≤ t ≤ Kr, xi = (ωi,])
di(ωi,⊥), ωi ∈ Ω, 0 ≤ di ≤ Tωi

}
. (5)

These are trajectories with at most Kr option executions, containing all possible sequences of op-
tions, and all possible option durations allowed by the model.Note that each trajectory in P⊥ termi-
nates with an option termination symbol of the form (ω,⊥). If we remove this last symbol for each
possible trajectory, we obtain a disjoint set of prefixes: P] = {x | x(ω,⊥) ∈ P⊥}. Then we take
P = P⊥ ∪ P].
Similarly, the set of suffixes will be obtained as the union of two sets. These are defined as follows:

S] =
{
x1x2 · · ·xt

∣∣ 1 ≤ t ≤ Ks, xi = (ωi,])
di(ωi,⊥), ωi ∈ Ω, 0 ≤ di ≤ Tωi

}
, (6)

S⊥ = {(ω,⊥)x | x ∈ S], ω ∈ Ω} . (7)

The suffixes in S] are obtained like the prefixes in P⊥, with the only difference that the number
of option executions is now upper bounded by Ks instead of Kr. Suffixes in S⊥ are obtained by
prefixing each string in S] with each possible option termination symbol (ω,⊥). The whole set of
suffixes is S = S⊥ ∪ S]
Note that not every string in PS defines a valid trajectory. This is required for the Hankel matrices
Hσ to be different from zero; otherwise the operators Aσ cannot be correctly recovered. To see
why this is the case, consider the basis B′ = (P⊥,S]). By construction we have P⊥S] ⊂ V .
However, if we consider a system where some ω never lasts for just one step, then every trajectory
in P⊥{(ω,⊥)}S] has probability zero. In particular, in such a system the matrix Hσ over the basis
B′ is exactly zero. To work around this problem, it is necessary to introduce non-valid trajectories
in the basis, to ensure that H will contain some sub-blocks filled with zeros, but the Hσ will contain
some non-zero sub-blocks.

4 Experimental Results

We first illustrate our approach on synthetic grids of different sizes. We use 4-connected grids with
four actions representing the cardinal directions (NEWS). Unless the current state is a “wall”, each
action moves the agent one step in the specified direction with probability 0.9, and remains in the
current state with probability 0.1. We also define one option for each cardinal direction. These
options take as many steps as possible in the specified direction until they hit a wall, at which point
the option terminates. A uniform random exploration policy is used for sampling episodes in which
ten options are executed up to termination. We used grids of sizes d × d with d ∈ {5, 9, 13}. For
each grid we also considered two possible initial conditions: one under which the initial state is
sampled uniformly at random , and the other where the agent deterministically starts from the center
of the grid (reported here).

We sampled training sets of different sizes and for each, we learned an ODM as described above.
To evaluate these ODMs we consider newly sampled trajectories and for each of them compare the
duration of options in the trajectory with the expected durations predicted by the learned model

4

Figure 1: Left: relative error vs. sample size for different grid size and history length 2. Middle: comparision
against a naive prediction strategy using only the empirical mean durations with d = 5 and history length 2.
Right: relative error vs. history length for d = 13. In all cases we choose Kr = Ks = 2.

0 10000 20000 30000 40000 50000
N

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

re
l.
 e

rr
or

d=5

d=9

d=13

0 10000 20000 30000 40000 50000

N

0.0

0.2

0.4

0.6

0.8

1.0

re
l.
 e

rr
o
r

PSR

Naive

True model

1 2 3 4 5 6 7 8
history length

0.05

0.10

0.15

0.20

0.25

0.30

0.35

re
l.
 e

rr
or

N=1000

N=3000

N=6000

N=12000

N=25000

N=50000

Table 1: Relative accuracy and optimal number of states for different grid sizes d, basis parameters (Kr,Ks),
and history length h. Training sample size fixed to N = 50000.

d (Kr, Ks) h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

5

(1 , 1) 0.10 (29) 0.19 (24) 0.25 (19) 0.28 (16) 0.30 (12) 0.30 (14) 0.31 (12) 0.31 (14)
(1 , 2) 0.10 (29) 0.20 (26) 0.25 (29) 0.28 (29) 0.30 (29) 0.30 (19) 0.31 (19) 0.31 (19)
(2 , 1) 0.10 (29) 0.10 (24) 0.14 (23) 0.17 (23) 0.19 (23) 0.20 (23) 0.21 (23) 0.21 (23)
(2 , 2) 0.09 (25) 0.08 (28) 0.13 (28) 0.16 (28) 0.19 (23) 0.19 (23) 0.20 (23) 0.20 (23)

9

(1 , 1) 0.16 (49) 0.29 (44) 0.37 (53) 0.41 (54) 0.43 (32) 0.44 (32) 0.44 (32) 0.44 (32)
(1 , 2) 0.18 (62) 0.31 (61) 0.38 (34) 0.42 (41) 0.44 (36) 0.44 (37) 0.45 (37) 0.46 (40)
(2 , 1) 0.08 (42) 0.21 (87) 0.24 (39) 0.25 (41) 0.26 (38) 0.26 (38) 0.26 (38) 0.25 (40)
(2 , 2) 0.08 (57) 0.07 (60) 0.14 (71) 0.19 (59) 0.22 (59) 0.24 (59) 0.25 (59) 0.25 (59)

13

(1 , 1) 0.16 (49) 0.30 (49) 0.40 (49) 0.44 (49) 0.48 (78) 0.48 (53) 0.48 (51) 0.48 (53)
(1 , 2) 0.20 (77) 0.37 (56) 0.43 (75) 0.47 (80) 0.49 (79) 0.50 (75) 0.50 (75) 0.51 (76)
(2 , 1) 0.07 (51) 0.21 (149) 0.25 (146) 0.26 (172) 0.27 (87) 0.26 (48) 0.25 (46) 0.26 (46)
(2 , 2) 0.07 (70) 0.06 (91) 0.14 (91) 0.19 (91) 0.23 (91) 0.25 (92) 0.25 (91) 0.26 (91)

given the current history. We do this for all options in a trajectory, and report the relative deviation
between observed and predicted duration as a function of the length of the observed history.

In each case, prediction accuracies are reported on a validation set with 2000 trajectories. A test
set of 2000 samples was used to select the best number of states 1 ≤ n ≤ d2 and basis parameters
Kr,Ks ∈ {1, 2}. The maximum durations of options needed to build the basis are estimated from
the training data. Results are reported in Table 1 and Figure 1. The results show that larger basis
and larger samples yield better models, and that predicted durations degrade as the length of the
history increases. This last finding is an effect of using a fixed initial state for the exploration; if the
initial state is chosen uniformly at random the prediction accuracy is more consistent across history
lengths. Note also how for smaller basis the best number of states to predict optimally with different
history lengths is more unstable.

We also tested the approach in a simulated robot with continuous state and nonlinear dynamics, in
which the actions correspond to actuators. We use the Box2D physics engine2 to obtain realistic
accelerations, collisions and friction effects for a circular differential wheeled robot. We set the
angular and linear damping to 0.9 and 0.99 respectively and use a coefficient of restitution of 0.1. A
primitive action in this domain consists in the application of force vector of (0.5, 0.5) on the wheels
every 1/10 of a simulated second.

Like in the synthetic case, we define a set of options; each option is identified by a radial direction
and is terminated when the robot hits a wall. We used sets of 4 and 8 options, describing directions
uniformly distributed across the unit circle. The environment simulates an empty square world of
size 4 × 4 units. Models where trained with 15000 trajectories and the number of states is selected
by searching in 1 ≤ n ≤ 200 with a test set containing 2000 trajectories. Accuracies for different
basis sizes are reported in Table 2.

2http://box2d.org/

5

Table 2: Relative accuracies and optimal number of states across several basis and history lengths for the robot
simulator with 4 and 8 options.

|Ω| (Kr, Ks) h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

4
(2 , 1) 0.19 (199) 0.25 (199) 0.26 (196) 0.30 (198) 0.31 (172) 0.33 (163) 0.31 (173) 0.30 (172)
(1 , 1) 0.15 (133) 0.28 (126) 0.31 (134) 0.35 (131) 0.36 (131) 0.36 (131) 0.36 (132) 0.36 (133)

8
(2 , 1) 0.40 (176) 0.47 (163) 0.49 (163) 0.51 (176) 0.52 (162) 0.51 (164) 0.50 (163) 0.52 (167)
(1 , 1) 0.38 (166) 0.48 (162) 0.46 (195) 0.51 (164) 0.52 (162) 0.51 (162) 0.51 (165) 0.54 (169)

5 Discussion

The approach we presented learns a predictive model for option durations. Using similar techniques
it is also possible to show that a value function for an MDP can actually be expressed as a linear
combination of the predictive state features obtained in this model. We are currently experimenting
with planning using such models. We note that modelling states in terms of what happens after
executing certain actions is known to be useful, e.g. [4]. But our models are simplified, in order to
avoid handling large observation spaces. In this respect, our work differs significantly both from
action-respecting embeddings [2, 3] and predictive state representations with options [15], which
aim to learn full observation models conditioned on extended actions, which characterize the current
state. Timing models get around the problem of both large action spaces (by using a finite set
of options) and the problem of large observation spaces (by focusing only on continuation and
termination). In this last respect it is worth mentioning that we have observed Theorem 2 not to be
tight in the grid MDP considered in our synthetic experiments: there the number of states of the best
ODM grows like O(

√
n) instead of O(n). This suggests it might be possible to show that an ODM

can be learned faster than the corresponding underlying MDP.

References
[1] B. Boots, S. Siddiqi, and G. Gordon. Closing the learning planning loop with predictive state representa-

tions. International Journal of Robotic Research, 2011.

[2] M. Bowling, A. Ghodsi, and D. Wilkinson. Action respecting embedding. In ICML, 2005.

[3] M. Bowling, D. Wilkinson, A. Ghodsi, and A. Milstein. Subjective localization with action respecting
embedding. Robotics Research, 2007.

[4] P. Dayan. Improving generalisation for temporal difference learning: The successor representation. Neu-
ral Computation, 1993.

[5] W. Droste, M. Kuich and H. Vogler. Handbook of weighted automata. Springer, 2009.

[6] J. J. Gibson. The theory of affordances. In R. Shaw and J. Bransford, editors, Perceiving, Acting, and
Knowing, 1977.

[7] H. Jaeger. Observable operator models for discrete stochastic time series. Neural Computation, 2000.

[8] M. Littman, R. Sutton, and S. Singh. Predictive representations of state. In NIPS, 2002.

[9] A. Machado, M. T. Malheiro, and W. Erlhagen. Learning to time: A perspective. Journal of the Experi-
mental Analysis of Behavior, 2009.

[10] M. Rosencrantz, G. Gordon, and S. Thrun. Learning low dimensional predictive representations. Inter-
national Conference on Machine Learning (ICML), 2004.

[11] M. Rosencrantz, G. Gordon, and S. Thrun. Learning low dimensional predictive representations. In
ICML, 2004.

[12] S. Singh, M. R. James, and M. R. Rudary. Predictive state representations: A new theory for modeling
dynamical systems. In UAI, 2004.

[13] J. Stober, R. Miikkulainen, and B. Kuipers. Learning geometry from sensorimotor experience. In Joint
Conference on Development and Learning and Epigenetic Robotics, 2011.

[14] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 1999.

[15] B. Wolfe and S. Singh. Predictive state representations with options. In ICML, 2006.

6

	Introduction
	Modelling Option Duration with PSR
	Spectral Learning of ODM
	Experimental Results
	Discussion

