
Preditive Timing Models

Pierre-Luc Bacon, Borja Balle, Doina Precup

Reasoning and Learning Lab
McGill University

From bad models to good policies (NIPS 2014)

Motivation

I Learning good models can be challenging (think of the Atari
domain for example)

I We consider a simpler kind of model: a subjective
(agent-oriented) predictive timing model.

I We define a notion of predictive state over the durations of
possible courses of actions.

I Timing models are known to be important in animal learning
(eg. Machado et al, 2009)

Motivation

I Learning good models can be challenging (think of the Atari
domain for example)

I We consider a simpler kind of model: a subjective
(agent-oriented) predictive timing model.

I We define a notion of predictive state over the durations of
possible courses of actions.

I Timing models are known to be important in animal learning
(eg. Machado et al, 2009)

Motivation

I Learning good models can be challenging (think of the Atari
domain for example)

I We consider a simpler kind of model: a subjective
(agent-oriented) predictive timing model.

I We define a notion of predictive state over the durations of
possible courses of actions.

I Timing models are known to be important in animal learning
(eg. Machado et al, 2009)

Motivation

I Learning good models can be challenging (think of the Atari
domain for example)

I We consider a simpler kind of model: a subjective
(agent-oriented) predictive timing model.

I We define a notion of predictive state over the durations of
possible courses of actions.

I Timing models are known to be important in animal learning
(eg. Machado et al, 2009)

Hypothetical timing model for a localization task

Today’s presentation will mostly be about the learning problem.
Planning results are coming up.

Options framework

An option is a triple:

〈I ⊆ S, π : S ×A → [0, 1], β : S → [0, 1]〉

I initiation set I
I policy π (stochastic or deterministic)

I termination condition β

Example

Robot navigation: if there is no obstacle in front (I), go forward
(π) until you get too close to another object (β.)

Usual option models

1. Expected reward rω: for every state, it gives the expected
return during ωs execution

2. Transition model pω: conditional distribution over next states
(reflecting the discount factor γ and the option duration)

Models give predictions about the future, conditioned on the
option being executed, i.e. generalized value functions

Options Duration Model (ODM)

Instead of predicting a full model at the end of an option
(probability distribution over observations or states), predict when
the option will terminate, i.e. the expected option duration or
the distribution over durations

Model

We have a dynamical system with observations from Ω× {],⊥},
where:

I] (sharp) denotes continuation

I ⊥ (bottom) denotes termination

We obtain a coarser representation of the original MDP:

(s1, πω1(s1)) , . . . , (sd−1, πω1(sd1−1)) , (sd1, πω2(sd1)) , ...→
(ω1,], . . . , ω1,], ω1,⊥, ω2,], . . . , ω2,], ω2,⊥, . . .)

= (ω1,])
d1−1(ω1,⊥)(ω2,])

d2−1(ω2,⊥) . . .

Predictive State Representation

A predictive state representation is a model of a dynamical system
where the current state is represented as a set of predictions about
the future behavior of the system.

A PSR with observations in Σ (finite) is a tuple
A = 〈αλ,α∞, {Aσ}σ∈Σ〉 where:

I αλ,α∞ ∈ Rn are the initial and final weights

I Aσ ∈ Rn×n are the transition weights

Predicting with PSR

A PSR A computes a function fA : Σ? → R that assigns a number
to each string x = x1x2 · · · xt ∈ Σ? as follows:

fA(x) = α>λ Ax1Ax2 · · ·Axtα∞ = α>λ Axα∞ .

The conditional probability of observing a sequence of observations
v ∈ Σ? after u is:

fA,u(v) =
fA(uv)

fA(u)
=

α>λ AuAvα∞

α>λ Auα∞
=

α>u Avα∞
α>u α∞

.

The PSR semantics of u is that of a history, and v of a test.

Embedding

Let δ(s0, ω) be a random variable representing the duration of
option ω when started from s0

P[δ(s0, ω) = d] = e>s0
Ad−1
ω,] Aω,⊥1 ,

es0 ∈ RS is an indicator vector with es0(s) = I[s = s0]

Aω,](s, s
′) =

∑
a∈A π(s, a)P(s, a, s ′) (1− β(s ′))︸ ︷︷ ︸

not stopping

Aω,⊥(s, s ′) =
∑

a∈A π(s, a)P(s, a, s ′) β(s ′)︸ ︷︷ ︸
stopping

,

1 ∈ RS

Theorem
Let M be an MDP with n states, Ω a set of options, and
Σ = Ω× {],⊥}. For every distribution α over the states of M,
there exists a PSR A = 〈α, 1, {Aσ}〉 with at most n states that
computes the distributions over durations of options executed from
a state sampled according to α.

The probability of a sequence of options ω̄ = ω1 · · ·ωt and their
durations d̄ = d1 · · · dt , di > 0. is then given by:

P[d̄ |α, ω̄] = α>Ad1−1
ω1,]

Aω1,⊥Ad2−1
ω2,]

Aω2,⊥ · · ·A
dt−1
ωt ,]

Aωt ,⊥1 .

Learning

A Hankel matrix a bi-infinite matrix, Hf ∈ RΣ?×Σ?
with rows and

columns indexed by strings in Σ?, which contains the joint
probabilities of prefixes and suffixes.

ε (ω0,⊥) (ω0,]), (ω0,⊥) (ω0,]), (ω0,]), (ω0,⊥), . . .


ε

...
(ω0,])

(ω0,]), (ω0,]) . . . P[(ω0,])(ω0,])(ω0,])(ω0,⊥)] . . .
(ω0,]), (ω0,]), (ω0,⊥)

...
...

Node: closely related to the so-called system dynamics matrix

General Learning Algorithm for WFA

Data Hankel
matrix WFALow-rank matrix

estimation
Factorization and

linear algebra

Key Idea: The Hankel Trick

1. Learn a low-rank Hankel matrix that implicitly induces
“latent” states

2. Recover the states from a decomposition of the
Hankel matrix

We can recover (up to a change of basis) the underlying PSR
through a rank-factorization of the Hankel matrix.

Given the SVD UΛV> of H, 3 lines of code suffice:

α>λ = h>λ,SV

α∞ = (HV)+hP,λ

Aσ = (HV)+HσV

Note: The use of SVD makes the algorithm robust to noisy
estimation of H.

Synthetic experiment

q0

q1

q2

q3

q4

q5

q6

q7

q8

Four options: go N, E, W, or S until the agent hits a wall. A
primitive action succeeds with probability 0.9. We report the

relative errors: |µA−dω |
max{µA,dω}

0 10000 20000 30000 40000 50000

N

0.0

0.2

0.4

0.6

0.8

1.0

re
l.
 e

rr
o
r

PSR

Naive

True model

The ”naive” method consists in predicting the empirical mean
durations, regardless of history. The PSR state updates clearly

help.

0 10000 20000 30000 40000 50000
N

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

re
l.
 e

rr
or

d=5

d=9

d=13

Relative error as a function of the number of samples for different
grid sizes

Continuous domain

|Ω| (Kr ,Ks) h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

4
(2 , 1) 0.19 (199) 0.25 (199) 0.26 (196) 0.30 (198) 0.31 (172) 0.33 (163) 0.31 (173) 0.30 (172)
(1 , 1) 0.15 (133) 0.28 (126) 0.31 (134) 0.35 (131) 0.36 (131) 0.36 (131) 0.36 (132) 0.36 (133)

8
(2 , 1) 0.40 (176) 0.47 (163) 0.49 (163) 0.51 (176) 0.52 (162) 0.51 (164) 0.50 (163) 0.52 (167)
(1 , 1) 0.38 (166) 0.48 (162) 0.46 (195) 0.51 (164) 0.52 (162) 0.51 (162) 0.51 (165) 0.54 (169)

Simulated robot with continuous state and nonlinear dynamics.
We use the Box2D physics engine to simulate a circular differential
wheeled robot (Roomba-like)

Future work

Planning: We have been able to show that given a policy over
options: and some ODM state then the value function is a linear
function the PSR state.

This suggests that the ODM state might be sufficient for planning

Also on the agenda:

I Try to gain a better theoretical understanding of the
environment vs PSR-rank relationship.

I Conduct planning experiments on the learnt models.

Thank you

The off-policy case

The exploration policy will be reflected in the empirical Hankel
matrix. We can compensate by forming an auxiliary PSR. For a
uniform policy, we would have:

απ
λ = e0

απ
∞ = 1

Aπ
ωi ,]

(0, ωi) = |Ω|
Aπ
ωi ,]

(ωi , ωi) = 1

Aπ
ωi ,]

(0, 0) = |Ω|
Aπ
ωi ,]

(ωi , 0) = 1

and take compute the corrected Hankel by taking the Hadamard
product:

H = Ĥ�Hπ

