Preditive Timing Models

Pierre-Luc Bacon, Borja Balle, Doina Precup

Reasoning and Learning Lab McGill University

From bad models to good policies (NIPS 2014)

► Learning good models can be challenging (think of the Atari domain for example)

- Learning good models can be challenging (think of the Atari domain for example)
- We consider a simpler kind of model: a subjective (agent-oriented) predictive timing model.

- Learning good models can be challenging (think of the Atari domain for example)
- We consider a simpler kind of model: a subjective (agent-oriented) predictive timing model.
- We define a notion of **predictive state** over the durations of possible courses of actions.

- Learning good models can be challenging (think of the Atari domain for example)
- We consider a simpler kind of model: a subjective (agent-oriented) predictive timing model.
- We define a notion of predictive state over the durations of possible courses of actions.
- ► Timing models are known to be important in animal learning (eg. Machado et al, 2009)

 $Hypothetical\ timing\ model\ for\ a\ localization\ task$

Today's presentation will mostly be about the learning problem.

Planning results are coming up.

Options framework

An option is a triple:

$$\langle \mathcal{I} \subseteq \mathcal{S}, \ \pi : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1], \ \beta : \mathcal{S} \rightarrow [0, 1] \rangle$$

- ightharpoonup initiation set \mathcal{I}
- **policy** π (stochastic or deterministic)
- **•** termination condition β

Example

Robot navigation: if there is no obstacle in front (\mathcal{I}) , go forward (π) until you get too close to another object (β) .

Usual option models

- 1. Expected reward r_{ω} : for every state, it gives the expected return during ω s execution
- 2. Transition model p_{ω} : conditional distribution over next states (reflecting the discount factor γ and the option duration)

Models give predictions about the future, conditioned on the option being executed, i.e. generalized value functions

Options Duration Model (ODM)

Instead of predicting a full model at the end of an option (probability distribution over observations or states), **predict when the option will terminate**, i.e. the expected option duration or the distribution over durations

Model

We have a dynamical system with observations from $\Omega \times \{\sharp, \bot\}$, where:

- # (sharp) denotes continuation
- ▶ ⊥ (bottom) denotes termination

We obtain a coarser representation of the original MDP:

$$(s_1, \pi_{\omega_1}(s_1)), \dots, (s_{d-1}, \pi_{\omega_1}(s_{d_1-1})), (s_{d1}, \pi_{\omega_2}(s_{d_1})), \dots \to$$

 $(\omega_1, \sharp, \dots, \omega_1, \sharp, \omega_1, \bot, \omega_2, \sharp, \dots, \omega_2, \sharp, \omega_2, \bot, \dots)$
 $= (\omega_1, \sharp)^{d_1-1}(\omega_1, \bot)(\omega_2, \sharp)^{d_2-1}(\omega_2, \bot) \dots$

Predictive State Representation

A predictive state representation is a model of a dynamical system where the current state is represented as a set of predictions about the future behavior of the system.

A PSR with observations in Σ (finite) is a tuple $\mathcal{A} = \langle \boldsymbol{\alpha}_{\lambda}, \boldsymbol{\alpha}_{\infty}, \{\mathbf{A}_{\sigma}\}_{\sigma \in \Sigma} \rangle$ where:

- $m{ ilde{\wedge}}$ $m{lpha}_{\lambda}, m{lpha}_{\infty} \in \mathbb{R}^n$ are the initial and final weights
- ▶ $\mathbf{A}_{\sigma} \in \mathbb{R}^{n \times n}$ are the transition weights

Predicting with PSR

A PSR \mathcal{A} computes a function $f_{\mathcal{A}}: \Sigma^* \to \mathbb{R}$ that assigns a number to each string $x = x_1 x_2 \cdots x_t \in \Sigma^*$ as follows:

$$f_{\mathcal{A}}(x) = \boldsymbol{lpha}_{\lambda}^{\top} \boldsymbol{\mathsf{A}}_{x_1} \boldsymbol{\mathsf{A}}_{x_2} \cdots \boldsymbol{\mathsf{A}}_{x_t} \boldsymbol{lpha}_{\infty} = \boldsymbol{lpha}_{\lambda}^{\top} \boldsymbol{\mathsf{A}}_{x} \boldsymbol{lpha}_{\infty} \ .$$

The conditional probability of observing a sequence of observations $v \in \Sigma^*$ after u is:

$$f_{\mathcal{A},u}(v) = \frac{f_{\mathcal{A}}(uv)}{f_{\mathcal{A}}(u)} = \frac{\alpha_{\lambda}^{\top} \mathbf{A}_{u} \mathbf{A}_{v} \alpha_{\infty}}{\alpha_{\lambda}^{\top} \mathbf{A}_{u} \alpha_{\infty}} = \frac{\alpha_{u}^{\top} \mathbf{A}_{v} \alpha_{\infty}}{\alpha_{u}^{\top} \alpha_{\infty}}.$$

The PSR semantics of u is that of a *history*, and v of a *test*.

Embedding

Let $\delta(s_0,\omega)$ be a random variable representing the duration of option ω when started from s_0

$$\mathbb{P}[\delta(\mathbf{s}_0,\omega)=d] = \mathbf{e}_{\mathbf{s}_0}^{\top} \mathbf{A}_{\omega,\sharp}^{d-1} \mathbf{A}_{\omega,\perp} \mathbf{1} \ ,$$

 $\mathbf{e}_{s_0} \in \mathbb{R}^S$ is an indicator vector with $\mathbf{e}_{s_0}(s) = \mathbb{I}[s=s_0]$

$$\mathbf{A}_{\omega,\sharp}(s,s') = \sum_{a \in A} \pi(s,a) P(s,a,s') \underbrace{(1-eta(s'))}_{ ext{not stopping}}$$

$$\mathbf{A}_{\omega,\perp}(s,s') = \sum_{a \in A} \pi(s,a) P(s,a,s') \underbrace{\beta(s')}_{ ext{stopping}}$$
 ,

 $\mathbf{1} \in \mathbb{R}^{\mathcal{S}}$

Theorem

Let M be an MDP with n states, Ω a set of options, and $\Sigma = \Omega \times \{\sharp, \bot\}$. For every distribution α over the states of M, there exists a PSR $\mathcal{A} = \langle \alpha, \mathbf{1}, \{\mathbf{A}_{\sigma}\} \rangle$ with at most n states that computes the distributions over durations of options executed from a state sampled according to α .

The probability of a sequence of options $\bar{\omega} = \omega_1 \cdots \omega_t$ and their durations $\bar{d} = d_1 \cdots d_t$, $d_i > 0$. is then given by:

$$\mathbb{P}[\bar{d}|\alpha,\bar{\omega}] = \boldsymbol{\alpha}^{\top} \mathbf{A}_{\omega_{1},\sharp}^{d_{1}-1} \mathbf{A}_{\omega_{1},\bot} \mathbf{A}_{\omega_{2},\sharp}^{d_{2}-1} \mathbf{A}_{\omega_{2},\bot} \cdots \mathbf{A}_{\omega_{t},\sharp}^{d_{t}-1} \mathbf{A}_{\omega_{t},\bot} \mathbf{1} \ .$$

Learning

A Hankel matrix a bi-infinite matrix, $\mathbf{H}_f \in \mathbb{R}^{\Sigma^{\star} \times \Sigma^{\star}}$ with rows and columns indexed by strings in Σ^{\star} , which contains the joint probabilities of prefixes and suffixes.

$$\begin{array}{c} \epsilon \\ (\omega_0, \pm) \\ (\omega_0, \sharp), (\omega_0, \sharp), (\omega_0, \pm), (\omega_$$

Node: closely related to the so-called system dynamics matrix

Key Idea: The Hankel Trick

We can recover (up to a change of basis) the underlying PSR through a rank-factorization of the Hankel matrix.

Given the SVD $\mathbf{U}\Lambda\mathbf{V}^{\top}$ of \mathbf{H} , 3 lines of code suffice:

$$egin{aligned} oldsymbol{lpha}_{\lambda}^{ op} &= oldsymbol{\mathsf{h}}_{\lambda,\mathcal{S}}^{ op} oldsymbol{\mathsf{V}} \\ oldsymbol{lpha}_{\infty} &= (oldsymbol{\mathsf{H}}oldsymbol{\mathsf{V}})^{+} oldsymbol{\mathsf{h}}_{P,\lambda} \\ oldsymbol{\mathsf{A}}_{\sigma} &= (oldsymbol{\mathsf{H}}oldsymbol{\mathsf{V}})^{+} oldsymbol{\mathsf{H}}_{\sigma} oldsymbol{\mathsf{V}} \end{aligned}$$

Note: The use of SVD makes the algorithm robust to noisy estimation of \mathbf{H} .

Synthetic experiment

Four options: go N, E, W, or S until the agent hits a wall. A primitive action succeeds with probability 0.9. We report the relative errors: $\frac{|\mu_{\mathbf{A}} - d_{\omega}|}{\max\{\mu_{\mathbf{A}}, d_{\omega}\}}$

The "naive" method consists in predicting the empirical mean durations, regardless of history. The PSR state updates clearly help.

Relative error as a function of the number of samples for different grid sizes

Continuous domain

		h = 1							
4	(2,1)	0.19 (199) 0.15 (133)	0.25 (199)	0.26 (196)	0.30 (198)	0.31 (172)	0.33 (163)	0.31 (173)	0.30 (172)
	(1,1)	0.15 (133)	0.28 (126)	0.31 (134)	0.35 (131)	0.36 (131)	0.36 (131)	0.36 (132)	0.36 (133)
8	(2,1)	0.40 (176)	0.47 (163)	0.49 (163)	0.51 (176)	0.52 (162)	0.51 (164)	0.50 (163)	0.52 (167) 0.54 (169)
	(1,1)	0.38 (166)	0.48 (162)	0.46 (195)	0.51 (164)	0.52 (162)	0.51 (162)	0.51 (165)	0.54 (169)

Simulated robot with continuous state and nonlinear dynamics. We use the Box2D physics engine to simulate a circular differential wheeled robot (Roomba-like)

Future work

Planning: We have been able to show that given a policy over options: and some ODM state then the value function is a linear function the PSR state.

This suggests that the ODM state might be sufficient for planning

Also on the agenda:

- ► Try to gain a better theoretical understanding of the environment vs PSR-rank relationship.
- Conduct planning experiments on the learnt models.

The off-policy case

The exploration policy will be reflected in the empirical Hankel matrix. We can compensate by forming an auxiliary PSR. For a uniform policy, we would have:

$$oldsymbol{lpha}_{\lambda}^{\pi} = \mathbf{e}_0 \ oldsymbol{lpha}_{\infty}^{\pi} = \mathbf{1} \ oldsymbol{A}_{\omega_i,\sharp}^{\pi}(0,\omega_i) = |\Omega| \ oldsymbol{A}_{\omega_i,\sharp}^{\pi}(\omega_i,\omega_i) = 1 \ oldsymbol{A}_{\omega_i,\sharp}^{\pi}(0,0) = |\Omega| \ oldsymbol{A}_{\omega_i,\sharp}^{\pi}(\omega_i,0) = 1$$

and take compute the corrected Hankel by taking the Hadamard product:

$$H = \hat{H} \odot H_{\pi}$$