
Using label propagation for learning temporally abstract
actions in reinforcement learning

Pierre-Luc Bacon
School of Computer Science

McGill University
Montreal, QC, Canada

Doina Precup
School of Computer Science

McGill University
Montreal, QC, Canada

dprecup@cs.mcgill.ca

ABSTRACT
Temporal abstraction plays a key role in scaling up rein-
forcement learning algorithms. While learning and planning
with given temporally extended actions has been well stud-
ied, the topic of how to construct this type of abstraction
automatically from data is still open. We propose to use the
label propagation algorithm for community detection in or-
der to construct extended actions, within the framework of
options. We illustrate the benefit of the approach in small
computational experiments and discuss its relationship to
existing methods for subgoal discovery.

1. INTRODUCTION
Reinforcement learning is an active area of machine learn-

ing research, which aims to describe how agents can learn
actively and incrementally from interaction with their envi-
ronment. A crucial aspect needed to scale up reinforcement
learning algorithms is abstraction, i.e., building higher-level
representations from the sensory stream that the agent re-
ceives, and from its (often low-level) actions. We focus on
temporal abstraction, in which high-level controllers or be-
haviours are obtained by “chaining together” low-level ac-
tions, and we adopt the options framework [24]. By devel-
oping options, or skills, an agent can learn more efficiently
by reusing prior knowledge, instead of continuously reason-
ing from scratch at the atomic scale of primitive actions.
For example, a manipulator might have an option for reach-
ing and opening a door knob using the sensory information
from tactile sensors and the action set defined over the pos-
sible motor commands at each joint. By learning such an
option and later using it as prior knowledge for some new
(but related) task, the solution to the new task can be ob-
tained much faster, and requires less new data (which could
be expensive to acquire).

A lot of research has focused on developing learning and
planning methods when options are given (e.g, in the form
of subgoals that are worthwhile to achieve). However, a
designer may not always be able to express easily such sub-
goals. Several papers have addressed the problem of learning
subgoals from the agent’s interaction with its environment,
e.g. [20, 14, 22, 12, 21]. Most of these approaches rely on the
idea of bottleneck or access states, which are important when

Appears in: Proceedings of the Workshop on Multiagent In-
teraction Networks (MAIN 2013), held in conjunction with
AAMAS 2013, May 7, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2012, the authors. All rights reserved.

an agent travels around its state space. Despite many papers
on this topic, there is still no consensus on which method
might be superior. One of the issues is that all methods
require a fairly large amount of data to be acquired in order
for the bottleneck state detection and the option construc-
tion to succeed. We are interested in developing methods
which are more data-efficient, and which may even work in
an incremental setting.

We approach this problem by considering the interaction
graph discovered while the learning agent is actively explor-
ing its environment. This is a graph in which different states
of the agent are connected if transitions between these states
were observed when the agent took some action. We use the
network perspective to analyze the state interaction graph.
The intuition is that “communities” of states, i.e. densely
connected subsets of states linked together by sparse con-
nections [13], provide natural initiation sets for options, and
that states sitting “between” communities are natural sub-
goals. This definition is thus closely related to idea of access
states from [19].

An approach similar in flavor is that of Simsek & Barto [20],
which relies on the complete representation of the interac-
tion graph to detect bottleneck states using the between-
ness centrality measure. However, assuming that most ef-
fective solutions for a task might lie in a sparse subgraph
of the state space, a complete representation of the interac-
tion graph might be impossible to obtain or unnecessary for
discovering good skills.

In contrast, we present an algorithm meant to operate
while we monitor the interaction of an RL agent with its
environment. We aim to reconstruct incrementally part of
the interaction graph and extract useful skills from it. Our
approach is based on a near-linear time label propagation
algorithm for detecting community structures in networks
[18]. This is an initial foray into the use of label propagation,
and other algorithms could be used instead as well.

The paper is structured as follows. Section 2 reviews back-
ground, notation and related work. Section 3 develops the
label propagation algorithm for option construction. In Sec-
tion 4 we present an empirical illustration of the approach
in a small discrete problem. In Section 5 we explain how
the approach can be generalized to continuous state space
and present preliminary evidence of its utility in this case.
In Section 6 we conclude and discuss future work.



2. BACKGROUND

2.1 Reinforcement learning
In reinforcement learning, an agent interacts with its en-

vironment at discrete time steps. At each time t, it receives
a collection of sensations, which we call the state st, and
based on this observation, it takes an action at. As a re-
sult, the environment provides a numerical reward signal
rt+1, a new state st+1 is observed, and the process repeats.
A standard assumption used to formalize this problem is
that the environment is in fact a Markov Decision Process
(MDP). An MDP is a tuple 〈S,A, P,R, γ〉 consisting of a
set of states S, a set of primitive actions A, transition prob-
abilities P : S × A×, S 7→ [0, 1], expected reward function
R : S × A 7→ R and discount factor γ ∈ [0, 1]. The learn-
ing task for an RL agent is to learn a policy π : S 7→ A
that dictates the choice of action in any given state so as to
maximize the total reward received over time. We consider
the discounted reward criterion, in which the action-value
function for a given policy π, Qπ : S ×A→ R is defined as:

Qπ(s, a) = E(rt+1 + γrt+2 + ...|st = s, at = a) (1)

In any discrete MDP, there exists an optimal action-value
function, which satisfies the following set of Bellman equa-
tions:

Q∗(s, a) = R(s, a)+γ
∑
s′∈S

P (s′|s, a) max
b∈A

Q∗(s′, b), ∀s ∈ S, a ∈ A

(2)
A widely used algorithm for learning an action-value func-

tion is Q-Learning [26], which has been shown to converge
to the optimal action-value function when actions are sam-
pled infinitely often in every state [5]. Q-Learning is an
incremental dynamic programming algorithm that succes-
sively improves the estimate on the action-value function by
computing:

Q(st, at)← Q(st, at)+

α(rt+1 + γmax
a′∈A

Q(st+1, a′)−Q(st, at)) (3)

where α is the learning rate and γ is the discount factor
(which determines the extent to which the agent should
strive for long term reward or act myopically).

2.2 Options Framework
Options [24] are a popular way of defining temporally ex-

tended actions in reinforcement learning.
Since we adopted the MDP assumption, we use Markov

options. A Markov option o consists of a tuple 〈I, π, β〉
where the initiation set I ⊆ S specifies in which states the
option can be invoked, π : S 7→ O is a sub-policy defined for
o and β : S 7→ [0, 1] defines the probability of terminating
the execution of π in any given state. The primitive action
set A can now be replaced with a set of options. Note that
a primitive action a can be redefined as an option by setting
β(s) = 1 ∀s ∈ S, making the corresponding option available
everywhere a can be invoked: I = {s : a ∈ As} and finally,
having a sub-policy which selects a for every state: π(s, a) =
a ∀s ∈ S

In [24] the authors show that and MDP together with
a set of options O forms a Semi-Markov Decision Process
(SMDP) 〈S,O, γ,RO, PO〉, where S and γ are as above, and
the reward function RO : S × O 7→ R and transition sub-
probability function PO : S × O × S 7→ [0, 1] are computed

from R, P and the definitions of the options inO. An option-
value function can be defined in this SMDP as:

Qµ(s, o) = E{rt+1 + γrt+2 + γ2rt+3 + ...|E(oµ, s, t)} (4)

In equation (4), oµ corresponds to choosing option o, ex-
ecuting its sub-policy until termination, and then choosing
another options according to the main policy over options
µ. Q-Learning can also be extended to SMDPs and options,
and the options-value function is learnt incrementally with
the following update rule:

Q(s, o) = Q(s, o) + α(r + γk max
a∈O

Q(s′, a)−Q(s, o)) (5)

The update above is only evaluated after the option has
terminated. In contrast, intra-option learning [23] can take
place throughout the execution of an option. It leads to
more efficient use of experience, which can also be shared
simultaneously among all options that are consistent with
it.

2.3 Related Work
We now review some approaches for automatically con-

structing options (or skills) from data. The idea of bottle-
neck regions of the interaction graph has been instrumental
in the development of most of these techniques. The canoni-
cal example of bottlenecks can be found in a navigation task
within an environment with multiple-rooms, where subgoals
naturally corresponds to the doorways connecting two rooms
(i.e. regions of the state space). Bottlenecks have been de-
fined as those states which appear frequently on successful
trajectories to a goal but not on unsuccessful ones [12, 22]
or as nodes which allow for densely connected regions of
the interaction graph to reach other such regions [14, 21, 6].
Bottleneck states are found using graph centrality measures
in [20, 17] and capture most of the properties outlined above
by defining important nodes as those which lie frequently on
shortest paths between states.

It appears that all of these approaches can also be cate-
gorized on the basis of whether the total reward obtained
on a trajectory is taken into account in the identification of
useful subgoals. Solutions that consider only the structural
properties of the interaction graph assume that the state-
space dynamics is the only determining factor in defining
options. The other class of approaches treats both dynam-
ics and rewards, accounting for the fact that bottlenecks of
the state-space dynamics do not necessarily correspond to
desirable subgoals to develop for a task.

The idea of sampling trajectories while the agent is inter-
acting with the environment is central to most approaches.
One drawback of this class of methods is that primitive ac-
tions might not suffice to attain the task goal or yield to
successful (defined in a domain-dependent way) trajecto-
ries. Hence, these methods can require large amounts of
data, possibly too expensive to acquire. Furthermore, use-
ful solutions might lie within sparse subgraphs of the entire
interaction graph (a similar intuition behind manifold em-
bedding techniques of machine learning).

McGovern & Barto [12] formulate the problem of find-
ing subgoals as a multiple-instance learning problem over
bag of feature vectors collected by interacting with the en-
vironment. Two sets of bags are obtained in this way, from
observations collected along successful and unsuccessful tra-
jectories respectively. The notion of diverse density is then
applied either by exhaustive search or gradient descent to



find regions of the feature space with the most positive in-
stances and the least negative ones. Because negative bags
must only contain unsuccessful trajectories, while positive
bags have to contain at least one successful feature vector,
this method is sensitive to noise.

In [19], the authors identify subgoals by looking for access
states which lead to the regions of the state space that have
not been visited recently and trying to capture the notion
of relative novelty The time frame within which to search
for such novelty events is a parameter of this algorithm and
influences the results obtained.

The graph-cut algorithm proposed in [14] tries to identify
access states of those densely connected regions linked to-
gether through a few important edges. Wolfe & Barto [21]
apply the same graph-cut partitioning but only over local
transition graphs obtained from the sampled trajectories. A
similar approach of finding strongly connected components
(SCC) of the interaction graph is adopted in [6]. Since most
MDP problems exhibit ergodicity, the applicability of this
algorithm seems limited. Ergodic chains would then lead to
large components being detected by SCC.

By representing the entire interaction graph, Simsek &
Barto [20] compute betweenness centrality to identify im-
portant subgoals. They also propose a potential incremental
formulation of their algorithm that finds local maxima of be-
tweenness within the subgraph obtained by collecting short
trajectories. However, it has also been argued [17] that the
centrality measure called connection graph stability leads to
better subgoal identification than betweenness or closeness
centrality.

The problem of subgoal discovery has only been recently
considered under the formulation of graph clustering. Mathew
& al. [11] also build an interaction graph out of which clus-
ters of nodes are found using the PCCA+ [27] algorithm.
The concept of metastability motivates this approach and
tries to find regions of the state space in which a dynamical
system spends more time. PCCA+ is a spectral clustering
technique which comes at a higher cost than the approach
proposed here.

3. SKILLS DISCOVERY
We base our definition of subgoals on the intuitive notions

of access states from [19, 21]. Such states are found to me-
diate access to other regions of the graph. More precisely,
we posit that they lie on paths connecting densely connected
regions with sparse connections between them. We present a
skill discovery algorithm based on label propagation (LPA)
for detecting community structures. An overview of the
skills detection algorithms based on centrality measures is
also presented for comparison purposes with LPA in the next
section.

3.1 Community Structures
Communities are groups of nodes (also known as modules)

with dense connections within the group but sparse links to
other groups. The algorithms presented in [15] iteratively
remove edges based on their measure of betweenness, defined
as the relative number of all the shortest paths going through
a given edge. Edges with the highest values are removed first
and betweenness is recomputed after every deletion.

The notion of modularity is introduced [15] to measure the
quality of the current partitioning of a network into com-
munities and it is used to define the termination condition.

Modularity is defined as the difference between the fraction
of the edges belonging to communities and their expected
number in a network which would have the same commu-
nity partitioning but with random edges assignment. Hence,
a modularity value of 0 corresponds to a community parti-
tioning which does not differ from random networks, whereas
a value of 1 indicates the strongest presence of community
structures. While splitting the network into smaller com-
munities, a sudden increase in the modularity is considered
as an indicator that an optimum might have been attained.
Simulated Annealing (SA) was applied in [13] as a global
optimization method to find such optima. Unfortunately,
even with Brandes’ algorithm [1] for computing betweenness
centrality in O(nm), this community detection technique re-
mains prohibitively expensive. In particular, this complex-
ity is not well-suited for the amounts of data that would be
acquired by an agent during its environment interactions.

3.2 Label Propagation Algorithm (LPA)
Raghavan et al. [18] introduced a near-linear time algo-

rithm for finding community structures that does not rely on
any prior knowledge about the networks nor any definition
of an objective function for global optimization purposes.
This algorithm starts by assigning unique initial community
labels to every node. At each iteration, neighboring nodes
try to reach a consensus on their labels. LPA can be sum-
marized in the following steps:

1. Assign an initial unique label to every vertices in the
graph G

2. Arrange the vertices in a random sequence X

3. For every vertex v ∈ X, assign it the label which ap-
pears the most frequently in the neighborhood of v,
breaking ties uniformly at random.

4. Repeat steps 2 and 3 as long as there are vertices whose
labels differ from the most frequent label in their neigh-
borhood.

Under certain graph structures, such as bipartite graphs,
LPA might not converge to a stable solution and a termina-
tion condition would have to be defined arbitrarily. We will
not handle this issue in this paper, but rather concentrate on
the problem of updating the labelling efficiently. By collect-
ing trajectories from an RL agent, the resulting interaction
graph will be continuously altered: edges will be added and
others will be removed if deemed unnecessary. We would
thus want to update the current labelling online in an incre-
mental fashion. [16] extends LPA by labelling nodes with a
pair that consists of a time and a label components. It then
proceeds to local updates in a similar way to LPA:

1. Given a new edge, label its endpoints u and v as (t, u)
and (t, v) where t is the current time

2. Add u and v to a local set Xl together with their neigh-
bors

3. Shuffle Xl and apply the same label assignment rule as
LPA except that ties are resolved based on the label
with the largest t.

4. Add all node that have changed their label to a new
set Xl.



5. Repeat steps 2 to 4 until a consensus is reached

Updating the labels after an edge has been added is O(ml+
nl) where ml is the number of vertices in the set Xl and nl,
the edges.

3.3 Using Weight Information
While collecting trajectories, it can be useful to set the

weight on an edge, e.g. as the number of times a transition
has been experienced over it. This allows us not only to
prune the interaction graph from possibly irrelevant edges
(and thus lower the computation burden) but also to bias
the label propagation algorithm towards those nodes with
the highest importance in terms of weight. We modified the
label selection criterion of LPA such that the label occurring
with the most cumulative weight among a node’s neighbors
is the one that gets assigned. Note that this is a strict gener-
alization of the previous approach, which can be rephrased
as all weights being equal to 1.

3.4 Finding Subgoals within Communities
The set of states within a community naturally fits the

idea of the initiation set component in the options frame-
work. It is however less obvious to come up with a precise
definition of which node within a community should be a
subgoal. We use a similar approach as [6] and try to find
those edge points that have at least one outgoing edge to
another community of a significant size. In the aforemen-
tioned paper, the authors make the assumption that commu-
nity sizes are normally distributed and only consider those
which are least Pr(X < µ+ 2σ) ≈ 0.95. Since a community
can also have multiple such edge points, we decided to only
use the one with the highest weight to another community.

3.5 Centrality Measures
For comparison with our LPA algorithm, we also used

some graph centrality techniques for options detection [20,
17]

CB(v) =
∑
s 6=t6v

σst(v)

σst
(6)

CC(v) =
1∑

t∈V dG(v, t)
(7)

Betweenness centrality (eq. 6) is defined as the fraction
of the shortest paths σst between any possible pair pass-
ing through a vertex v. Naive computation of betweenness
centrality would be Θ(n3) but [1] showed that the complex-
ity be can reduced to O(nm) or O(nm + n2 logn) in the
unweigthed and weighted case respectively. Closeness cen-
trality (eq. 7), corresponds to the inverse of the distances
from a given vertex to every other vertex in the graph.

We use the scoring measure of [17] in order discover max-
ima of either betweenness or closeness centrality:

S(v) = C(v)

(
C(v)

maxu∈N(v)(C(v))

)2

(8)

In equation (8), C(v) is either the betweenness or closeness
centrality and N(v) is the set of neighbors for node v. We set
a threshold on the minimum score that a node must achieve
comparatively to the scores computed for the other nodes.
For example, we might require that the score should be 97%
larger than for any other node.

Figure 1: The domain that we used has four 5 × 5
rooms connected using four doors. The correspond-
ing state space for this problem has 103 states.

4. ILLUSTRATION

As a proof of concept, we tested our algorithm in a grid
world environment, similarly to many other papers on option
construction. The environment, depicted in Figure 4, con-
sists of four rooms in which the agent must navigate while
avoiding collisions with un-penetrable walls. Every move
incurs a penalty of -1, while reaching the goal results in a
positive reward of 50. The environment is stochastic with
transition probabilities set to 0.7.

The graph discovery procedure that we then applied over
this domain was the following:

1. Collect trajectories for 100 episodes for a primitive
Q-Learning agent with an epsilon greedy exploration
strategy.

2. Build the transition graph

3. Run weighted label propagation

4. Identify subgoals

5. Create options

We used our automatic detection algorithm to find po-
tential subgoals in the interaction graph obtained from a
hundred trajectories of a regular Q-learning agent. The re-
sulting subgoals and communities are depicted in Figure 4.
Q-Learning for options (eq. 5) was then executed for another
hundred episodes in order to learn the options’ subpolicies.
The initiation set I for an option was defined as the states
within a community and the termination probabilities spec-
ified by β were set to 1 at the subgoal and 0 everywhere
else. We compared the performance of our LPA algorithm
against skill discovery methods based on betweenness and
closeness centrality. Skills based on centrality methods were
selected using different thresholds: 0.90, 0.92, 0.95, and 0.97.
The performance of 1000 independent agents for each set of
options was averaged over 100 episodes.

As shown in Figure 4, the options discovered by our LPA-
based algorithm are useful enough to reduce the number of
steps needed to attain the goal compared to the performance
of an agent using only a flat policy over primitive actions.
However, our algorithm is outperformed by the centrality-
based approaches. We think that this could be explained
by the simple nature of the problem domain, for which the
9 communities detected by LPA might lead to an overly
complicated solution. Due to the small number of states in
this domain, the computation time of the two approaches is



19
11

4

10

1
8

19

3
3

14

3
0

3

28

7

19

29

2
2

21

20

25

7

6

19

14

21

7

16

18

9

19

21

22

18

12

2
4

16

2
0

2

2
7

2
8

11

15

9

4

7

7

14

16

5

9

22

19

12

2
4

2
3

14

25

24

22

2
4

3
2

12

24

25

10

20

26

2
3

15

14

23

18

10

26

14
16 14

4

6

30

9

12

5

5

15

2

9

17

24

24

3
2

12

19

2
7

2
0

6

16

31

6

2
7

27

4

7

16

16

19

17

30

27

21

5

2
4

18

4

12

8

36

10

22

14

11

19

9

11

16

2
0

20

2
2

12

17

18

17

32

17

17

23

16

10

21

16

13

12

16

19

4
4 6

27

44

11

22

2
5

22

5

3
1

14

10

3
0

18 1
7

18

15

20

1
8

21

4

12

2

26

1
6

7

35

11

15
33

11

8

18

19

39

7

23
22

11
9

22

11

9

17

2
8

11

41

2
6

5

10

6

41

2
4

15

17

14

8

2
4

35

9

27

22

9

11

19

24
4

36

26

49

2

7

22

19

15

15
7

7

9
21

0
1

2
3

4

5
6

7

8

9

1011
12

13

14

15 16
17

18

19

20
21

22

23

24

25

26
27

28

29

30

3132
33

34

35

36
37

38

39

40

4142

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
59

60
61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78
79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Figure 2: Nine communities were detected by LPA
when the subgoal detection threshold was set to 0.68
(one point of standard deviation) and edges with
only one transition were removed. A spring layout
was used to draw the graph. The subgoals are high-
lighted in black.

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

Number of episodes

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r 

o
f 
s
te

p
s

 

 

bw−90%

bw−92%

bw−95%

bw−97%

cl−90%

cl−92%

cl−95%

cl−97%

Figure 3: Cumulative number of steps as a function
of the number of episodes for RL agents with be-
havior policies based on betweenness and closeness
centrality. The set of options obtained by select-
ing only the subgoals corresponding to maxima of
closeness centrality under a threshold of 0.92 seems
to produce the most efficient behavior; the worst is
obtained for betweenness at 0.90.

0 10 20 30 40 50 60 70 80 90 100
0

5000

10000

15000

Number of episodes

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r 

o
f 
s
te

p
s

 

 

lpa

pimitive

bw−97%

cl−92%

Figure 4: Our label propagation algorithm for skills
discovery leads to shorter trajectories to the goal
than a primitive agent but is outperformed by other
approaches based on betweenness or closeness cen-
trality.

very similar. The scalability of LPA will however be better
appreciated in the next experiment.

5. SCALING TO CONTINUOUS MARKOV
DECISION PROCESSES

We conducted a preliminary experiment to assess the scal-
ability of our skill discovery algorithm in a continuous state-
space. Transitioning from the discrete world to the con-
tinuous one, however, requires a new graph construction
approach. Furthermore, the identified subgoal states and
initialization sets must be generalized to regions of the con-
tinuous state space.

We chose to apply the continuous extension of our commu-
nity detection approach to the Pinball ball domain described
in [7]. Pinball is an episodic 4-dimensional domain in which
the agent must navigate a ball to the goal through arbitrar-
ily shaped obstacles. Since collisions do not incur a penalty,
an agent can strategically bounce the ball off the obstacles
to reach the goal more efficiently. The complex dynamics
resulting from elastic collisions make this domain difficult.

For efficiency reasons, we decided to adopt a biased sam-
pling strategy by collecting trajectories of a learning agent.
We used an RL-Glue [25] implementation of a Sarsa(λ) agent
with Fourier bases provided by the main author of [8]. Once
the dataset of trajectories is collected, there remains the
problem of defining neighboring relationships in the graph.
For a single trajectory, one could simply use the temporal
ordering of states within the trajectory as the graph struc-
ture. However, in the continuous setting, this would likely
result in a disconnected graph when trying to merge multi-
ple trajectories, as the same state may never be encountered
twice. We thus use the graph construction approach of [10]
connecting each node to its k-nearest neighbors (according
to the Euclidean distance) and setting the edge weights to



Figure 5: Number of communities detected as a
function of the number of nearest neighbors used
in the graph construction.

W (i, j) = e−
‖xi−xj‖

2
Rn

σ .
Our preliminary results with the igraph [3] implementa-

tion of LPA can easily handle (within a few seconds) the
above graph construction over 30000 nodes. The number
of communities found is however quite high, even after hav-
ing applied the aggregation procedure described in [18]. In-
creasing the number of nearest neighbors during the graph
construction phase has a very strong effect on the number of
communities detected, as shown in Figure 5. As expected,
using more neighbors creates denser areas of the graph, re-
sulting in fewer and larger communities being detected. The
shape of the graph suggests that k might need to be chosen
based on the desired number of options one would need. Dif-
ferent graph construction methods may be worth exploring
here as well.

In the current version of this experiment, we have not yet
completed the step of taking these communities and gener-
ating actual subgoals from them. As in the discrete case, we
could identify subgoals from the state-space graph by con-
sidering the nodes lying on the boundary of a community i.e.
the nodes adjacent to other nodes of a different community.
But since none of them will be exactly encountered again by
a learning agent, we need to devise a proper state abstrac-
tion mechanism for generating subgoals. We envision three
possible approaches:

Feature Construction
A discretization scheme could be obtained by parti-
tioning the state-space using kd-trees for example. More
recently, Random Projection Trees (RP-Trees) [4] have
been been shown to scale better in higher dimensions
while naturally adapting to the intrinsic low-dimensionality
of the data. Density estimation methods could also
help for this problem. We could, for example, put a
multivariate Gaussian over each identified subgoal.

Non-parametric Clustering
Within a community, we could apply a non-parametric
clustering algorithm to obtain a partition between sub-
goals and non-subgoals states. Given new observations
encountered by a learning agent, termination could be
decided based on the distance to the closest cluster.

Classifier Learning
A classification method (eg. SVM, decision tree, lo-
gistic regression) could be learned for every option to
discriminate its subgoals from other states. This idea
has already been explored in earlier work [7] for defin-
ing the initiation set of an option.

Since our approach to option discovery relies on a graph
representation of the state-space, it could subsequently be
used for learning a control policy using Representation Pol-
icy Iteration (RPI) [10] based on Least-Squares Policy It-
eration (LSPI) [9]. Note that one only has to form the
Laplacian of the community and compute its eigenvectors to
obtain Proto-Value Function (PVF) bases. This idea has al-
ready been exploited in the metastability framework of [11].
Due to the possibly large size of the subgraphs, computing
the eigenvectors could turn out to be too expensive and any
other suitable learning algorithm could be used instead.

As for the definition of the initialization set, the problem is
closely related to the one of recognizing subgoal states and
the same set of proposed approaches could be attempted.
Proper definition of the initialization set is often neglected
in most of the work about options, which are often assumed
to be available everywhere. However, we think that the
concept of communities offers a natural definition and it is
worthwhile to leverage it.

6. DISCUSSION AND FUTURE WORK
The community detection approach to option construc-

tion presented in this paper has the advantage of providing
a clear definition for what the initiation set for an option
should be: any member of a community should also belong
to the initiation set of the corresponding option. On the
other hand, the question of identifying subgoals within those
regions has a less definite answer. We think an important
reason which explain the observed results has to do with the
heuristic that we designed for selecting a subgoal within the
multiple edge points of a community. This definition might
have to be revised in future work.

As expected, because of the stochastic nature of the al-
gorithm, we observed instability in the solutions returned
by LPA. The extension to label propagation proposed in [2]
shows that by using graph coloring for determining the order
of label updates, stability and convergence can be guaran-
teed. If it could be formulated incrementally, semi-synchronous
label propagation could be a useful improvement for our ap-
plication.

The four-rooms domain was used to compare the perfor-
mance of our algorithm against other skill detection tech-
niques. We think it would be crucial to investigate more
complex problem domains, which might yield a different
performance profile. It is reasonable to believe that an au-
tonomous skill detection system could make use of a com-
bination of different subgoals identification techniques over
this same community detection idea.

Finally, an important critique of our approach, but also
to the broader class to which it belongs, is that we make use



of only the structural properties of the state space. How-
ever, we note that reward or value information could eas-
ily be incorporated in the definition of the weights used by
the algorithm. For example, the weights could be based
on the values of the neighboring states, rather than on the
frequency of the transitions. This could lead to interesting
state abstractions, in which states of similar current valua-
tion would be grouped together. We leave the exploration
of such an approach for future work. Our immediate plan
is to complete the current version of the algorithm and in-
vestigate its theoretical properties in the continuous state
space.

7. REFERENCES
[1] U. Brandes. A faster algorithm for betweenness

centrality. Journal of Mathematical Sociology,
25(1994):163–177, 2001.

[2] G. Cordasco and L. Gargano. Community detection
via semi-synchronous label propagation algorithms. In
Business Applications of Social Network Analysis
(BASNA), 2010 IEEE International Workshop on,
pages 1 –8, 2010.

[3] G. Csardi and T. Nepusz. The igraph software package
for complex network research. International Journal of
Complex Systems, 2006.

[4] S. Dasgupta and Y. Freund. Random projection trees
and low dimensional manifolds. In STOC, pages
537–546, 2008.

[5] P. Dayan. Technical Note Q , -Learning. Machine
Learning, 292(3):279–292, 1992.

[6] S. J. Kazemitabar and H. Beigy. Using Strongly
Connected Components as a Basis for Autonomous
Skill Acquisition in Reinforcement Learning. In
Proceedings of the 6th International Symposium on
Neural Networks on Advances in Neural Networks,
pages 794–803, 2009.

[7] G. Konidaris and A. G. Barto. Skill discovery in
continuous reinforcement learning domains using skill
chaining. In Advances in Neural Information
Processing Systems 22, volume 22, pages 1015–1023,
2009.

[8] G. Konidaris, S. Osentoski, and P. Thomas. Value
Function Approximation in Reinforcement Learning
using the Fourier Basis. In AAAI, pages 380–385,
2011.

[9] M. Lagoudakis. Least-squares policy iteration. The
Journal of Machine Learning Research, 4:1107–1149,
2003.

[10] S. Mahadevan. Proto-value Functions : A Laplacian
Framework for Learning Representation and Control
in Markov Decision Processes. Journal of Machine
Learning Research, 8:2169–2231, 2007.

[11] V. Mathew, K. Peeyush, and B. Ravindran.
Abstraction in Reinforcement Learning in Terms of
Metastability. In EWRL, pages 1–14, 2012.

[12] A. McGovern and A. G. Barto. Automatic Discovery
of Subgoals in Reinforcement Learning using Diverse
Density. In Proceedings of the Eighteenth International
Conference on Machine Learning (ICML 2001), pages
361–368, 2001.

[13] A. Medus, G. Acuña, and C. Dorso. Detection of
community structures in networks via global

optimization. Physica A: Statistical Mechanics and its
Applications, 358(2-4):593–604, 2005.

[14] I. Menache, S. Mannor, and N. Shimkin. Q-Cut -
Dynamic Discovery of Sub-Goals in Reinforcement
Learning. In Proceedings of the 13th European
Conference on Machine Learning, pages 295–306,
2002.

[15] M. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical Review E,
69(2):1–15, 2004.

[16] S. Pang, C. Chen, and T. Wei. A Realtime Clique
Detection Algorithm: Time-Based Incremental Label
Propagation. 2009 Third International Symposium on
Intelligent Information Technology Application, pages
459–462, 2009.

[17] A. A. Rad, M. Hasler, and P. Moradi. Automatic Skill
Acquisition in Reinforcement Learning using
Connection Graph Stability Centrality. In
International Symposium on Circuits and Systems
(ISCAS 2010), pages 697–700, 2010.

[18] U. N. Raghavan, R. Albert, and S. Kumara. Near
linear time algorithm to detect community structures
in large-scale networks. Physical Review E -
Statistical, Nonlinear and Soft Matter Physics,
76(3):036106, 2007.

[19] O. Simsek and A. G. Barto. Using Relative Novelty to
Identify Useful Temporal Abstractions in
Reinforcement Learning. In Proceedings of the
Twenty-first International Conference (ICML 2004),
pages 751–758, 2004.

[20] O. Simsek and A. G. Barto. Skill characterization
based on betweenness. In Advances in Neural
Information Processing Systems 21, pages 1497–1504,
2008.

[21] O. Simsek, A. P. Wolfe, and A. G. Barto. Identifying
useful subgoals in reinforcement learning by local
graph partitioning. In Proceedings of the Twenty
Second International Conference (ICML 2005), pages
816–823, 2005.

[22] M. Stolle and D. Precup. Learning options in
reinforcement learning. In Abstraction, Reformulation
and Approximation, 5th International Symposium,
pages 212–223, 2002.

[23] R. Sutton, D. Precup, and S. Singh. Intra-option
learning about temporally abstract actions. In ICML,
pages 556–564, 1998.

[24] R. S. Sutton, D. Precup, and S. Singh. Between MDPs
and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial
Intelligence, 112(1-2):181–211, 1999.

[25] B. Tanner and A. White. RL-Glue :
Language-Independent Software for
Reinforcement-Learning Experiments. Journal of
Machine Learning Research, 10:2133–2136, 2009.

[26] C. Watkins. Learning from Delayed Rewards. PhD
thesis, Cambridge University, England, 1989.

[27] M. Weber, W. Rungsarityotin, and A. Schliep. Perron
Cluster Analysis and Its Connection to Graph
Partitioning for Noisy Data. Technical Report
November, Zuse Institute Berlin ZIB, Berlin, 2004.


