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» We show that when planning with options, the corresponding Options specify a family of successive approximation methods for
Bellman operator involves a matrix splitting (Varga 1962). solving Markov Decision Processes containing the following two
» Equivalently, a set of options and a policy over them is shown to extreme members:
specify a matrix preconditioner. 1. L©™®)y=(] — ~P,)"1r,, when options always continue.
» A choice of options is therefore a choice of a preconditioned fixed 2. LOv=r, + vP,v, when options always stop.

point iteration algorithm.

Theorem 1 : Options Induce a Regular Splitting

Options Framework Let A=] — yP,, M=I — yH and N=y(P, — H), then A= M — N is

A Markovian option (Sutton, Precup, and Singh 1999) w € W is a a regular splitting.

triple (Z, 7y, Bw) where:
» L., C S is the initiation set Corollary 1 : Convergence
» T, IS a policy
» B, S — [0,1] is a termination function.
The policy over options is i1 : S — (W — [0, 1]).

For the regular splitting of theorem 1,
1. The spectral radius of the iteration matrix is
p(v(I = yH) TPy — H)) <1
2. The successive approximation method based on the generalized
Generalized Bellman Operator Bellman operator L converges for any initial vector vy.

Value iteration typically propagates values for one time step only.
However, multi-steps backups are also possible (Sutton 1995). We
consider the following generalized Bellman operator in which the
number of backups K is a random variable:

Theorem 2 : Consistency

The iterative method
i - Vic1i = (I —vH) 'r, + (I — vH) (P, — H)w, k>0

K—1
(Lv)(s)=E Z Wk r(Sk, Ax) + ﬂyK v(Sk) | So = s associated with the matrix splitting is a consistent policy evaluation
0 method if the set of options and policy over them is such that

0(a|s)zz,u(w\s)ww(a|s)Va6A,5€S

where o is the target policy to be evaluated.

Linear Representation of [ and Options Models

We now assume that the number of backups K in L is controlled by Theorem 3 : Predict Further, Plan Faster
the termination functions of a set of Markovian options. By linearity,
we can decompose the generalized Bellman operator in a reward If a set of options W has the same intra-option policies and policy
model b and a transition model F: over options with some other set YV but whose termination functions
are such that 35(s) < Bu(s)Vw € W,s € S, then:
b=(l —yH)*r,,  and  F=y(l —yH) (P, — H) . 0 < p(M~N) < p(M~'N) < 1.
where
SHES SHMEMAES
and » We now have formal framework to define what good options are.
H(s,s')= Z w(w | s) Z mw(a|s)P(s'|s,a)(l— Bu(s)) . » We can compare options through the splitting that they induce.
w 2 » It opens up new opportunities for options discovery.
The generalized Bellman operator L then becomes: » The idea of transfer learning with options is natural:
Llv=b+ Fy = (/ _ WH)_lra 4 7(/ _ WH)_l(Pa _ H)V . » [he preconditioner M can be reused for different RHS.

» Preconditioning can also regularize ill-conditioned linear systems:

» Options for off-policy learning
» Options to deal with partial observability, feature aliasing

The Preconditioning Effect of Options
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