A Matrix Splitting Perspective on Planning with Options

 Pierre-Luc Bacon and Doina PrecupReasoning and Learning Lab (RLLAB), McGill University

Summary

- We show that when planning with options, the corresponding Bellman operator involves a matrix splitting (Varga 1962).
- Equivalently, a set of options and a policy over them is shown to specify a matrix preconditioner.
- A choice of options is therefore a choice of a preconditioned fixed point iteration algorithm.

Options Framework

A Markovian option (Sutton, Precup, and Singh 1999) $w \in \mathcal{W}$ is a triple $\left(\mathcal{I}_{w}, \pi_{w}, \beta_{w}\right)$ where:

- $\mathcal{I}_{w} \subseteq \mathcal{S}$ is the initiation set
- π_{w} is a policy
- $\beta_{w}: \mathcal{S} \rightarrow[0,1]$ is a termination function.

The policy over options is $\mu: \mathcal{S} \rightarrow(\mathcal{W} \rightarrow[0,1])$.

Generalized Bellman Operator

Value iteration typically propagates values for one time step only. However, multi-steps backups are also possible (Sutton 1995). We consider the following generalized Bellman operator in which the number of backups K is a random variable:

$$
(L v)(s) \doteq \mathbb{E}\left[\sum_{k=0}^{K-1} \gamma^{k} r\left(S_{k}, A_{k}\right)+\gamma^{K} v\left(S_{K}\right) \mid S_{0}=s\right]
$$

Linear Representation of L and Options Models

We now assume that the number of backups K in L is controlled by the termination functions of a set of Markovian options. By linearity, we can decompose the generalized Bellman operator in a reward model b and a transition model F :

$$
b \doteq(I-\gamma H)^{-1} r_{\sigma}, \quad \text { and } \quad F \doteq \gamma(I-\gamma H)^{-1}\left(P_{\sigma}-H\right)
$$

where

$$
\sigma(a \mid s) \doteq \sum_{w} \mu(w \mid s) \pi_{w}(a \mid s)
$$

and

$$
H\left(s, s^{\prime}\right) \doteq \sum_{w} \mu(w \mid s) \sum_{a} \pi_{w}(a \mid s) P\left(s^{\prime} \mid s, a\right)\left(1-\beta_{w}\left(s^{\prime}\right)\right)
$$

The generalized Bellman operator L then becomes:

$$
L v=b+F v=(I-\gamma H)^{-1} r_{\sigma}+\gamma(I-\gamma H)^{-1}\left(P_{\sigma}-H\right) v
$$

The Preconditioning Effect of Options

The generalized Bellman equations can also be written as:

$$
v=v+(I-\gamma H)^{-1}\left(r_{\sigma}-\left(I-\gamma P_{\sigma}\right) v\right)
$$

Options therefore yield the following preconditioned linear system:

$$
(I-\gamma H)^{-1}\left(I-\gamma P_{\sigma}\right) v=(I-\gamma H)^{-1} r_{\sigma} .
$$

A good set of options is therefore one for which M close to $I-\gamma P_{\sigma}$ but whose inverse M^{-1} is easier to compute.

A Family of Successive Approximation Methods

Options specify a family of successive approximation methods for solving Markov Decision Processes containing the following two extreme members:

1. $L^{(\infty)} v \doteq\left(I-\gamma P_{\sigma}\right)^{-1} r_{\sigma}$, when options always continue.
2. $L^{(0)} v \doteq r_{\sigma}+\gamma P_{\sigma} v$, when options always stop.

Theorem 1 : Options Induce a Regular Splitting

Let $A \doteq I-\gamma P_{\sigma}, M \doteq I-\gamma H$ and $N \doteq \gamma\left(P_{\sigma}-H\right)$, then $A=M-N$ is a regular splitting.

Corollary 1 : Convergence

For the regular splitting of theorem 1,

1. The spectral radius of the iteration matrix is $\rho\left(\gamma(I-\gamma H)^{-1}\left(P_{\sigma}-H\right)\right)<1$
2. The successive approximation method based on the generalized Bellman operator L converges for any initial vector v_{0}.

Theorem 2 : Consistency

The iterative method

$$
v_{k+1}=(I-\gamma H)^{-1} r_{\sigma}+\gamma(I-\gamma H)^{-1}\left(P_{\sigma}-H\right) v_{k}, \quad k \geq 0
$$

associated with the matrix splitting is a consistent policy evaluation method if the set of options and policy over them is such that

$$
\sigma(a \mid s)=\sum_{w} \mu(w \mid s) \pi_{w}(a \mid s) \forall a \in \mathcal{A}, s \in \mathcal{S}
$$

where σ is the target policy to be evaluated.

Theorem 3 : Predict Further, Plan Faster

If a set of options $\widetilde{\mathcal{W}}$ has the same intra-option policies and policy over options with some other set \mathcal{W} but whose termination functions are such that $\beta_{\widetilde{w}}(s) \leq \beta_{w}(s) \forall w \in \mathcal{W}, s \in \mathcal{S}$, then:
$0 \leq \rho\left(\widetilde{M}^{-1} \widetilde{N}\right) \leq \rho\left(M^{-1} N\right)<1$.

Implications

- We now have formal framework to define what good options are.
- We can compare options through the splitting that they induce.
- It opens up new opportunities for options discovery.
- The idea of transfer learning with options is natural:
- The preconditioner M can be reused for different RHS.
- Preconditioning can also regularize ill-conditioned linear systems:
- Options for off-policy learning
- Options to deal with partial observability, feature aliasing

References

- Richard S. Varga. Matrix iterative analysis. Prentice-Hall, 1962
- Richard S. Sutton. "TD Models: Modeling the World at a Mixture of Time Scales". In: ICML. 1995
- Richard S. Sutton, Doina Precup, and Satinder P. Singh. "Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning". In: Artif. Intell. 112.1-2 (1999), pp. 181-211

