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Summary

I We show that when planning with options, the corresponding
Bellman operator involves a matrix splitting (Varga 1962).

I Equivalently, a set of options and a policy over them is shown to
specify a matrix preconditioner.

I A choice of options is therefore a choice of a preconditioned fixed
point iteration algorithm.

Options Framework

A Markovian option (Sutton, Precup, and Singh 1999) w ∈ W is a
triple (Iw , πw , βw) where:
I Iw ⊆ S is the initiation set
I πw is a policy
I βw : S → [0, 1] is a termination function.

The policy over options is µ : S → (W → [0, 1]).

Generalized Bellman Operator

Value iteration typically propagates values for one time step only.
However, multi-steps backups are also possible (Sutton 1995). We
consider the following generalized Bellman operator in which the
number of backups K is a random variable:

(Lv)(s)=̇E

K−1∑
k=0

γkr(Sk,Ak) + γKv(SK)

∣∣∣∣∣∣ S0 = s



Linear Representation of L and Options Models

We now assume that the number of backups K in L is controlled by
the termination functions of a set of Markovian options. By linearity,
we can decompose the generalized Bellman operator in a reward
model b and a transition model F :

b=̇(I − γH)−1rσ, and F =̇γ(I − γH)−1(Pσ − H) ,

where

σ (a | s)=̇
∑
w

µ (w | s) πw (a | s) ,

and

H(s, s ′)=̇
∑
w

µ (w | s)
∑
a

πw (a | s)P (s ′ | s, a) (1− βw(s ′)) .

The generalized Bellman operator L then becomes:

Lv = b + Fv = (I − γH)−1rσ + γ(I − γH)−1(Pσ − H)v .

The Preconditioning Effect of Options

The generalized Bellman equations can also be written as:

v = v + (I − γH)−1(rσ − (I − γPσ)v)

Options therefore yield the following preconditioned linear system:

(I − γH)−1(I − γPσ)v = (I − γH)−1rσ .

A good set of options is therefore one for which M close to I − γPσ
but whose inverse M−1 is easier to compute.

A Family of Successive Approximation Methods

Options specify a family of successive approximation methods for
solving Markov Decision Processes containing the following two
extreme members:

1. L(∞)v=̇(I − γPσ)−1rσ, when options always continue.

2. L(0)v=̇rσ + γPσv , when options always stop.

Theorem 1 : Options Induce a Regular Splitting

Let A=̇I − γPσ, M=̇I − γH and N=̇γ(Pσ − H), then A = M − N is
a regular splitting.

Corollary 1 : Convergence

For the regular splitting of theorem 1,

1. The spectral radius of the iteration matrix is
ρ(γ(I − γH)−1(Pσ − H)) < 1

2. The successive approximation method based on the generalized
Bellman operator L converges for any initial vector v0.

Theorem 2 : Consistency

The iterative method

vk+1 = (I − γH)−1rσ + γ(I − γH)−1(Pσ − H)vk, k ≥ 0

associated with the matrix splitting is a consistent policy evaluation
method if the set of options and policy over them is such that

σ (a | s) =
∑
w

µ (w | s) πw (a | s)∀a ∈ A, s ∈ S

where σ is the target policy to be evaluated.

Theorem 3 : Predict Further, Plan Faster

If a set of options W̃ has the same intra-option policies and policy
over options with some other set W but whose termination functions
are such that βw̃(s) ≤ βw(s)∀w ∈ W , s ∈ S, then:
0 ≤ ρ(M̃−1Ñ) ≤ ρ(M−1N) < 1.

Implications

I We now have formal framework to define what good options are.
I We can compare options through the splitting that they induce.
I It opens up new opportunities for options discovery.
I The idea of transfer learning with options is natural:

I The preconditioner M can be reused for different RHS.
I Preconditioning can also regularize ill-conditioned linear systems:

I Options for off-policy learning
I Options to deal with partial observability, feature aliasing
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